মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x+3y=8,3x+3y=9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+3y=8
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-3y+8
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{2}\left(-3y+8\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{2}y+4
\frac{1}{2} কে -3y+8 বার গুণ করুন।
3\left(-\frac{3}{2}y+4\right)+3y=9
অন্য সমীকরণ 3x+3y=9 এ x এর জন্য -\frac{3y}{2}+4 বিপরীত করু ন।
-\frac{9}{2}y+12+3y=9
3 কে -\frac{3y}{2}+4 বার গুণ করুন।
-\frac{3}{2}y+12=9
3y এ -\frac{9y}{2} যোগ করুন।
-\frac{3}{2}y=-3
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
y=2
-\frac{3}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{2}\times 2+4
x=-\frac{3}{2}y+4 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-3+4
-\frac{3}{2} কে 2 বার গুণ করুন।
x=1
-3 এ 4 যোগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
2x+3y=8,3x+3y=9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
\left(\begin{matrix}2&3\\3&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 3}&-\frac{3}{2\times 3-3\times 3}\\-\frac{3}{2\times 3-3\times 3}&\frac{2}{2\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8+9\\8-\frac{2}{3}\times 9\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
পাটিগণিত করুন।
x=1,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+3y=8,3x+3y=9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x-3x+3y-3y=8-9
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+3y=8 থেকে 3x+3y=9 বাদ দিন।
2x-3x=8-9
-3y এ 3y যোগ করুন। টার্ম 3y এবং -3y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-x=8-9
-3x এ 2x যোগ করুন।
-x=-1
-9 এ 8 যোগ করুন।
x=1
-1 দিয়ে উভয় দিককে ভাগ করুন।
3+3y=9
3x+3y=9 এ x এর জন্য পরিবর্ত হিসাবে 1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
3y=6
সমীকরণের উভয় দিক থেকে 3 বাদ দিন।
y=2
3 দিয়ে উভয় দিককে ভাগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।