মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x-6y=-16,5x-y=18
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-x-6y=-16
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-x=6y-16
সমীকরণের উভয় দিকে 6y যোগ করুন।
x=-\left(6y-16\right)
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-6y+16
-1 কে 6y-16 বার গুণ করুন।
5\left(-6y+16\right)-y=18
অন্য সমীকরণ 5x-y=18 এ x এর জন্য -6y+16 বিপরীত করু ন।
-30y+80-y=18
5 কে -6y+16 বার গুণ করুন।
-31y+80=18
-y এ -30y যোগ করুন।
-31y=-62
সমীকরণের উভয় দিক থেকে 80 বাদ দিন।
y=2
-31 দিয়ে উভয় দিককে ভাগ করুন।
x=-6\times 2+16
x=-6y+16 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-12+16
-6 কে 2 বার গুণ করুন।
x=4
-12 এ 16 যোগ করুন।
x=4,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
-x-6y=-16,5x-y=18
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\18\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{-6}{-\left(-1\right)-\left(-6\times 5\right)}\\-\frac{5}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}&\frac{6}{31}\\-\frac{5}{31}&-\frac{1}{31}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}\left(-16\right)+\frac{6}{31}\times 18\\-\frac{5}{31}\left(-16\right)-\frac{1}{31}\times 18\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-x-6y=-16,5x-y=18
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\left(-1\right)x+5\left(-6\right)y=5\left(-16\right),-5x-\left(-y\right)=-18
-x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন।
-5x-30y=-80,-5x+y=-18
সিমপ্লিফাই।
-5x+5x-30y-y=-80+18
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -5x-30y=-80 থেকে -5x+y=-18 বাদ দিন।
-30y-y=-80+18
5x এ -5x যোগ করুন। টার্ম -5x এবং 5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-31y=-80+18
-y এ -30y যোগ করুন।
-31y=-62
18 এ -80 যোগ করুন।
y=2
-31 দিয়ে উভয় দিককে ভাগ করুন।
5x-2=18
5x-y=18 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x=20
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=4
5 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=2
সিস্টেম এখন সমাধান করা হয়েছে।