মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x-5y=14,-2x-7y=16
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-x-5y=14
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-x=5y+14
সমীকরণের উভয় দিকে 5y যোগ করুন।
x=-\left(5y+14\right)
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-5y-14
-1 কে 5y+14 বার গুণ করুন।
-2\left(-5y-14\right)-7y=16
অন্য সমীকরণ -2x-7y=16 এ x এর জন্য -5y-14 বিপরীত করু ন।
10y+28-7y=16
-2 কে -5y-14 বার গুণ করুন।
3y+28=16
-7y এ 10y যোগ করুন।
3y=-12
সমীকরণের উভয় দিক থেকে 28 বাদ দিন।
y=-4
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-5\left(-4\right)-14
x=-5y-14 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=20-14
-5 কে -4 বার গুণ করুন।
x=6
20 এ -14 যোগ করুন।
x=6,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।
-x-5y=14,-2x-7y=16
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{-5}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\\-\frac{-2}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{1}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 14-\frac{5}{3}\times 16\\-\frac{2}{3}\times 14+\frac{1}{3}\times 16\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
পাটিগণিত করুন।
x=6,y=-4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-x-5y=14,-2x-7y=16
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2\left(-1\right)x-2\left(-5\right)y=-2\times 14,-\left(-2\right)x-\left(-7y\right)=-16
-x এবং -2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন।
2x+10y=-28,2x+7y=-16
সিমপ্লিফাই।
2x-2x+10y-7y=-28+16
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+10y=-28 থেকে 2x+7y=-16 বাদ দিন।
10y-7y=-28+16
-2x এ 2x যোগ করুন। টার্ম 2x এবং -2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
3y=-28+16
-7y এ 10y যোগ করুন।
3y=-12
16 এ -28 যোগ করুন।
y=-4
3 দিয়ে উভয় দিককে ভাগ করুন।
-2x-7\left(-4\right)=16
-2x-7y=16 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-2x+28=16
-7 কে -4 বার গুণ করুন।
-2x=-12
সমীকরণের উভয় দিক থেকে 28 বাদ দিন।
x=6
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=6,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।