মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x+y=-6,3x-2y=10
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-x+y=-6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-x=-y-6
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=-\left(-y-6\right)
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=y+6
-1 কে -y-6 বার গুণ করুন।
3\left(y+6\right)-2y=10
অন্য সমীকরণ 3x-2y=10 এ x এর জন্য y+6 বিপরীত করু ন।
3y+18-2y=10
3 কে y+6 বার গুণ করুন।
y+18=10
-2y এ 3y যোগ করুন।
y=-8
সমীকরণের উভয় দিক থেকে 18 বাদ দিন।
x=-8+6
x=y+6 এ y এর জন্য পরিবর্ত হিসাবে -8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-2
-8 এ 6 যোগ করুন।
x=-2,y=-8
সিস্টেম এখন সমাধান করা হয়েছে।
-x+y=-6,3x-2y=10
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\\-\frac{3}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-6\right)+10\\3\left(-6\right)+10\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-8\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=-8
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-x+y=-6,3x-2y=10
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\left(-1\right)x+3y=3\left(-6\right),-3x-\left(-2y\right)=-10
-x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন।
-3x+3y=-18,-3x+2y=-10
সিমপ্লিফাই।
-3x+3x+3y-2y=-18+10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -3x+3y=-18 থেকে -3x+2y=-10 বাদ দিন।
3y-2y=-18+10
3x এ -3x যোগ করুন। টার্ম -3x এবং 3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
y=-18+10
-2y এ 3y যোগ করুন।
y=-8
10 এ -18 যোগ করুন।
3x-2\left(-8\right)=10
3x-2y=10 এ y এর জন্য পরিবর্ত হিসাবে -8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x+16=10
-2 কে -8 বার গুণ করুন।
3x=-6
সমীকরণের উভয় দিক থেকে 16 বাদ দিন।
x=-2
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=-8
সিস্টেম এখন সমাধান করা হয়েছে।