মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x+5y=-1,x+2y=5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-x+5y=-1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-x=-5y-1
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=-\left(-5y-1\right)
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=5y+1
-1 কে -5y-1 বার গুণ করুন।
5y+1+2y=5
অন্য সমীকরণ x+2y=5 এ x এর জন্য 5y+1 বিপরীত করু ন।
7y+1=5
2y এ 5y যোগ করুন।
7y=4
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
y=\frac{4}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
x=5\times \frac{4}{7}+1
x=5y+1 এ y এর জন্য পরিবর্ত হিসাবে \frac{4}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{20}{7}+1
5 কে \frac{4}{7} বার গুণ করুন।
x=\frac{27}{7}
\frac{20}{7} এ 1 যোগ করুন।
x=\frac{27}{7},y=\frac{4}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
-x+5y=-1,x+2y=5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
\left(\begin{matrix}-1&5\\1&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-5}&-\frac{5}{-2-5}\\-\frac{1}{-2-5}&-\frac{1}{-2-5}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{5}{7}\\\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\left(-1\right)+\frac{5}{7}\times 5\\\frac{1}{7}\left(-1\right)+\frac{1}{7}\times 5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{7}\\\frac{4}{7}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{27}{7},y=\frac{4}{7}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-x+5y=-1,x+2y=5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-x+5y=-1,-x-2y=-5
-x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন।
-x+x+5y+2y=-1+5
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -x+5y=-1 থেকে -x-2y=-5 বাদ দিন।
5y+2y=-1+5
x এ -x যোগ করুন। টার্ম -x এবং x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7y=-1+5
2y এ 5y যোগ করুন।
7y=4
5 এ -1 যোগ করুন।
y=\frac{4}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
x+2\times \frac{4}{7}=5
x+2y=5 এ y এর জন্য পরিবর্ত হিসাবে \frac{4}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+\frac{8}{7}=5
2 কে \frac{4}{7} বার গুণ করুন।
x=\frac{27}{7}
সমীকরণের উভয় দিক থেকে \frac{8}{7} বাদ দিন।
x=\frac{27}{7},y=\frac{4}{7}
সিস্টেম এখন সমাধান করা হয়েছে।