মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-8x-6y=30,-6x+2y=-10
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-8x-6y=30
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-8x=6y+30
সমীকরণের উভয় দিকে 6y যোগ করুন।
x=-\frac{1}{8}\left(6y+30\right)
-8 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{4}y-\frac{15}{4}
-\frac{1}{8} কে 30+6y বার গুণ করুন।
-6\left(-\frac{3}{4}y-\frac{15}{4}\right)+2y=-10
অন্য সমীকরণ -6x+2y=-10 এ x এর জন্য \frac{-3y-15}{4} বিপরীত করু ন।
\frac{9}{2}y+\frac{45}{2}+2y=-10
-6 কে \frac{-3y-15}{4} বার গুণ করুন।
\frac{13}{2}y+\frac{45}{2}=-10
2y এ \frac{9y}{2} যোগ করুন।
\frac{13}{2}y=-\frac{65}{2}
সমীকরণের উভয় দিক থেকে \frac{45}{2} বাদ দিন।
y=-5
\frac{13}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{4}\left(-5\right)-\frac{15}{4}
x=-\frac{3}{4}y-\frac{15}{4} এ y এর জন্য পরিবর্ত হিসাবে -5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{15-15}{4}
-\frac{3}{4} কে -5 বার গুণ করুন।
x=0
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{15}{4} এ -\frac{15}{4} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=0,y=-5
সিস্টেম এখন সমাধান করা হয়েছে।
-8x-6y=30,-6x+2y=-10
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-10\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}\\-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{8}{-8\times 2-\left(-6\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}&-\frac{3}{26}\\-\frac{3}{26}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}\times 30-\frac{3}{26}\left(-10\right)\\-\frac{3}{26}\times 30+\frac{2}{13}\left(-10\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
পাটিগণিত করুন।
x=0,y=-5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-8x-6y=30,-6x+2y=-10
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-6\left(-8\right)x-6\left(-6\right)y=-6\times 30,-8\left(-6\right)x-8\times 2y=-8\left(-10\right)
-8x এবং -6x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -6 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -8 দিয়ে গুণ করুন।
48x+36y=-180,48x-16y=80
সিমপ্লিফাই।
48x-48x+36y+16y=-180-80
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 48x+36y=-180 থেকে 48x-16y=80 বাদ দিন।
36y+16y=-180-80
-48x এ 48x যোগ করুন। টার্ম 48x এবং -48x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
52y=-180-80
16y এ 36y যোগ করুন।
52y=-260
-80 এ -180 যোগ করুন।
y=-5
52 দিয়ে উভয় দিককে ভাগ করুন।
-6x+2\left(-5\right)=-10
-6x+2y=-10 এ y এর জন্য পরিবর্ত হিসাবে -5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-6x-10=-10
2 কে -5 বার গুণ করুন।
-6x=0
সমীকরণের উভয় দিকে 10 যোগ করুন।
x=0
-6 দিয়ে উভয় দিককে ভাগ করুন।
x=0,y=-5
সিস্টেম এখন সমাধান করা হয়েছে।