মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-8x+7y=13,7x-9y=-20
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-8x+7y=13
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-8x=-7y+13
সমীকরণের উভয় দিক থেকে 7y বাদ দিন।
x=-\frac{1}{8}\left(-7y+13\right)
-8 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{7}{8}y-\frac{13}{8}
-\frac{1}{8} কে -7y+13 বার গুণ করুন।
7\left(\frac{7}{8}y-\frac{13}{8}\right)-9y=-20
অন্য সমীকরণ 7x-9y=-20 এ x এর জন্য \frac{7y-13}{8} বিপরীত করু ন।
\frac{49}{8}y-\frac{91}{8}-9y=-20
7 কে \frac{7y-13}{8} বার গুণ করুন।
-\frac{23}{8}y-\frac{91}{8}=-20
-9y এ \frac{49y}{8} যোগ করুন।
-\frac{23}{8}y=-\frac{69}{8}
সমীকরণের উভয় দিকে \frac{91}{8} যোগ করুন।
y=3
-\frac{23}{8} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{7}{8}\times 3-\frac{13}{8}
x=\frac{7}{8}y-\frac{13}{8} এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{21-13}{8}
\frac{7}{8} কে 3 বার গুণ করুন।
x=1
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{21}{8} এ -\frac{13}{8} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=1,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
-8x+7y=13,7x-9y=-20
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-20\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-8\left(-9\right)-7\times 7}&-\frac{7}{-8\left(-9\right)-7\times 7}\\-\frac{7}{-8\left(-9\right)-7\times 7}&-\frac{8}{-8\left(-9\right)-7\times 7}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}&-\frac{7}{23}\\-\frac{7}{23}&-\frac{8}{23}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}\times 13-\frac{7}{23}\left(-20\right)\\-\frac{7}{23}\times 13-\frac{8}{23}\left(-20\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
পাটিগণিত করুন।
x=1,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-8x+7y=13,7x-9y=-20
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7\left(-8\right)x+7\times 7y=7\times 13,-8\times 7x-8\left(-9\right)y=-8\left(-20\right)
-8x এবং 7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -8 দিয়ে গুণ করুন।
-56x+49y=91,-56x+72y=160
সিমপ্লিফাই।
-56x+56x+49y-72y=91-160
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -56x+49y=91 থেকে -56x+72y=160 বাদ দিন।
49y-72y=91-160
56x এ -56x যোগ করুন। টার্ম -56x এবং 56x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-23y=91-160
-72y এ 49y যোগ করুন।
-23y=-69
-160 এ 91 যোগ করুন।
y=3
-23 দিয়ে উভয় দিককে ভাগ করুন।
7x-9\times 3=-20
7x-9y=-20 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
7x-27=-20
-9 কে 3 বার গুণ করুন।
7x=7
সমীকরণের উভয় দিকে 27 যোগ করুন।
x=1
7 দিয়ে উভয় দিককে ভাগ করুন।
x=1,y=3
সিস্টেম এখন সমাধান করা হয়েছে।