মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-6x+y=-2,-3x-6y=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-6x+y=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-6x=-y-2
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=-\frac{1}{6}\left(-y-2\right)
-6 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{6}y+\frac{1}{3}
-\frac{1}{6} কে -y-2 বার গুণ করুন।
-3\left(\frac{1}{6}y+\frac{1}{3}\right)-6y=12
অন্য সমীকরণ -3x-6y=12 এ x এর জন্য \frac{y}{6}+\frac{1}{3} বিপরীত করু ন।
-\frac{1}{2}y-1-6y=12
-3 কে \frac{y}{6}+\frac{1}{3} বার গুণ করুন।
-\frac{13}{2}y-1=12
-6y এ -\frac{y}{2} যোগ করুন।
-\frac{13}{2}y=13
সমীকরণের উভয় দিকে 1 যোগ করুন।
y=-2
-\frac{13}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{1}{6}\left(-2\right)+\frac{1}{3}
x=\frac{1}{6}y+\frac{1}{3} এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-1+1}{3}
\frac{1}{6} কে -2 বার গুণ করুন।
x=0
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{1}{3} এ \frac{1}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=0,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
-6x+y=-2,-3x-6y=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6\left(-6\right)-\left(-3\right)}&-\frac{1}{-6\left(-6\right)-\left(-3\right)}\\-\frac{-3}{-6\left(-6\right)-\left(-3\right)}&-\frac{6}{-6\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{39}\\\frac{1}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-2\right)-\frac{1}{39}\times 12\\\frac{1}{13}\left(-2\right)-\frac{2}{13}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
পাটিগণিত করুন।
x=0,y=-2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-6x+y=-2,-3x-6y=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-3\left(-6\right)x-3y=-3\left(-2\right),-6\left(-3\right)x-6\left(-6\right)y=-6\times 12
-6x এবং -3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -6 দিয়ে গুণ করুন।
18x-3y=6,18x+36y=-72
সিমপ্লিফাই।
18x-18x-3y-36y=6+72
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 18x-3y=6 থেকে 18x+36y=-72 বাদ দিন।
-3y-36y=6+72
-18x এ 18x যোগ করুন। টার্ম 18x এবং -18x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-39y=6+72
-36y এ -3y যোগ করুন।
-39y=78
72 এ 6 যোগ করুন।
y=-2
-39 দিয়ে উভয় দিককে ভাগ করুন।
-3x-6\left(-2\right)=12
-3x-6y=12 এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-3x+12=12
-6 কে -2 বার গুণ করুন।
-3x=0
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
x=0
-3 দিয়ে উভয় দিককে ভাগ করুন।
x=0,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।