মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-5x+10y=15,-5x+2y=-1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-5x+10y=15
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-5x=-10y+15
সমীকরণের উভয় দিক থেকে 10y বাদ দিন।
x=-\frac{1}{5}\left(-10y+15\right)
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=2y-3
-\frac{1}{5} কে -10y+15 বার গুণ করুন।
-5\left(2y-3\right)+2y=-1
অন্য সমীকরণ -5x+2y=-1 এ x এর জন্য 2y-3 বিপরীত করু ন।
-10y+15+2y=-1
-5 কে 2y-3 বার গুণ করুন।
-8y+15=-1
2y এ -10y যোগ করুন।
-8y=-16
সমীকরণের উভয় দিক থেকে 15 বাদ দিন।
y=2
-8 দিয়ে উভয় দিককে ভাগ করুন।
x=2\times 2-3
x=2y-3 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=4-3
2 কে 2 বার গুণ করুন।
x=1
4 এ -3 যোগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
-5x+10y=15,-5x+2y=-1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
পাটিগণিত করুন।
x=1,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-5x+10y=15,-5x+2y=-1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5x+5x+10y-2y=15+1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -5x+10y=15 থেকে -5x+2y=-1 বাদ দিন।
10y-2y=15+1
5x এ -5x যোগ করুন। টার্ম -5x এবং 5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
8y=15+1
-2y এ 10y যোগ করুন।
8y=16
1 এ 15 যোগ করুন।
y=2
8 দিয়ে উভয় দিককে ভাগ করুন।
-5x+2\times 2=-1
-5x+2y=-1 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-5x+4=-1
2 কে 2 বার গুণ করুন।
-5x=-5
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
x=1
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।