x, y এর জন্য সমাধান করুন
x=10
y=-6
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-4x-10y=20,8x+10y=20
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-4x-10y=20
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-4x=10y+20
সমীকরণের উভয় দিকে 10y যোগ করুন।
x=-\frac{1}{4}\left(10y+20\right)
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{2}y-5
-\frac{1}{4} কে 20+10y বার গুণ করুন।
8\left(-\frac{5}{2}y-5\right)+10y=20
অন্য সমীকরণ 8x+10y=20 এ x এর জন্য -\frac{5y}{2}-5 বিপরীত করু ন।
-20y-40+10y=20
8 কে -\frac{5y}{2}-5 বার গুণ করুন।
-10y-40=20
10y এ -20y যোগ করুন।
-10y=60
সমীকরণের উভয় দিকে 40 যোগ করুন।
y=-6
-10 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{2}\left(-6\right)-5
x=-\frac{5}{2}y-5 এ y এর জন্য পরিবর্ত হিসাবে -6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=15-5
-\frac{5}{2} কে -6 বার গুণ করুন।
x=10
15 এ -5 যোগ করুন।
x=10,y=-6
সিস্টেম এখন সমাধান করা হয়েছে।
-4x-10y=20,8x+10y=20
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-4\times 10-\left(-10\times 8\right)}&-\frac{-10}{-4\times 10-\left(-10\times 8\right)}\\-\frac{8}{-4\times 10-\left(-10\times 8\right)}&-\frac{4}{-4\times 10-\left(-10\times 8\right)}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 20+\frac{1}{4}\times 20\\-\frac{1}{5}\times 20-\frac{1}{10}\times 20\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-6\end{matrix}\right)
পাটিগণিত করুন।
x=10,y=-6
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-4x-10y=20,8x+10y=20
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
8\left(-4\right)x+8\left(-10\right)y=8\times 20,-4\times 8x-4\times 10y=-4\times 20
-4x এবং 8x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 8 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -4 দিয়ে গুণ করুন।
-32x-80y=160,-32x-40y=-80
সিমপ্লিফাই।
-32x+32x-80y+40y=160+80
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -32x-80y=160 থেকে -32x-40y=-80 বাদ দিন।
-80y+40y=160+80
32x এ -32x যোগ করুন। টার্ম -32x এবং 32x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-40y=160+80
40y এ -80y যোগ করুন।
-40y=240
80 এ 160 যোগ করুন।
y=-6
-40 দিয়ে উভয় দিককে ভাগ করুন।
8x+10\left(-6\right)=20
8x+10y=20 এ y এর জন্য পরিবর্ত হিসাবে -6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
8x-60=20
10 কে -6 বার গুণ করুন।
8x=80
সমীকরণের উভয় দিকে 60 যোগ করুন।
x=10
8 দিয়ে উভয় দিককে ভাগ করুন।
x=10,y=-6
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}