মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-4x+3y=-5,-7x+3y=-20
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-4x+3y=-5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-4x=-3y-5
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=-\frac{1}{4}\left(-3y-5\right)
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3}{4}y+\frac{5}{4}
-\frac{1}{4} কে -3y-5 বার গুণ করুন।
-7\left(\frac{3}{4}y+\frac{5}{4}\right)+3y=-20
অন্য সমীকরণ -7x+3y=-20 এ x এর জন্য \frac{3y+5}{4} বিপরীত করু ন।
-\frac{21}{4}y-\frac{35}{4}+3y=-20
-7 কে \frac{3y+5}{4} বার গুণ করুন।
-\frac{9}{4}y-\frac{35}{4}=-20
3y এ -\frac{21y}{4} যোগ করুন।
-\frac{9}{4}y=-\frac{45}{4}
সমীকরণের উভয় দিকে \frac{35}{4} যোগ করুন।
y=5
-\frac{9}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{3}{4}\times 5+\frac{5}{4}
x=\frac{3}{4}y+\frac{5}{4} এ y এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{15+5}{4}
\frac{3}{4} কে 5 বার গুণ করুন।
x=5
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{15}{4} এ \frac{5}{4} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=5,y=5
সিস্টেম এখন সমাধান করা হয়েছে।
-4x+3y=-5,-7x+3y=-20
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-4\times 3-3\left(-7\right)}&-\frac{3}{-4\times 3-3\left(-7\right)}\\-\frac{-7}{-4\times 3-3\left(-7\right)}&-\frac{4}{-4\times 3-3\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{7}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-5\right)-\frac{1}{3}\left(-20\right)\\\frac{7}{9}\left(-5\right)-\frac{4}{9}\left(-20\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
পাটিগণিত করুন।
x=5,y=5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-4x+3y=-5,-7x+3y=-20
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-4x+7x+3y-3y=-5+20
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -4x+3y=-5 থেকে -7x+3y=-20 বাদ দিন।
-4x+7x=-5+20
-3y এ 3y যোগ করুন। টার্ম 3y এবং -3y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
3x=-5+20
7x এ -4x যোগ করুন।
3x=15
20 এ -5 যোগ করুন।
x=5
3 দিয়ে উভয় দিককে ভাগ করুন।
-7\times 5+3y=-20
-7x+3y=-20 এ x এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
-35+3y=-20
-7 কে 5 বার গুণ করুন।
3y=15
সমীকরণের উভয় দিকে 35 যোগ করুন।
y=5
3 দিয়ে উভয় দিককে ভাগ করুন।
x=5,y=5
সিস্টেম এখন সমাধান করা হয়েছে।