x, y এর জন্য সমাধান করুন
x=2
y=6
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-3x+2y=6,3x+5y=36
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-3x+2y=6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-3x=-2y+6
সমীকরণের উভয় দিক থেকে 2y বাদ দিন।
x=-\frac{1}{3}\left(-2y+6\right)
-3 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{2}{3}y-2
-\frac{1}{3} কে -2y+6 বার গুণ করুন।
3\left(\frac{2}{3}y-2\right)+5y=36
অন্য সমীকরণ 3x+5y=36 এ x এর জন্য \frac{2y}{3}-2 বিপরীত করু ন।
2y-6+5y=36
3 কে \frac{2y}{3}-2 বার গুণ করুন।
7y-6=36
5y এ 2y যোগ করুন।
7y=42
সমীকরণের উভয় দিকে 6 যোগ করুন।
y=6
7 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{2}{3}\times 6-2
x=\frac{2}{3}y-2 এ y এর জন্য পরিবর্ত হিসাবে 6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=4-2
\frac{2}{3} কে 6 বার গুণ করুন।
x=2
4 এ -2 যোগ করুন।
x=2,y=6
সিস্টেম এখন সমাধান করা হয়েছে।
-3x+2y=6,3x+5y=36
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-3&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\36\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-3&2\\3&5\end{matrix}\right))\left(\begin{matrix}-3&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\3&5\end{matrix}\right))\left(\begin{matrix}6\\36\end{matrix}\right)
\left(\begin{matrix}-3&2\\3&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\3&5\end{matrix}\right))\left(\begin{matrix}6\\36\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\3&5\end{matrix}\right))\left(\begin{matrix}6\\36\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-3\times 5-2\times 3}&-\frac{2}{-3\times 5-2\times 3}\\-\frac{3}{-3\times 5-2\times 3}&-\frac{3}{-3\times 5-2\times 3}\end{matrix}\right)\left(\begin{matrix}6\\36\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{21}&\frac{2}{21}\\\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}6\\36\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{21}\times 6+\frac{2}{21}\times 36\\\frac{1}{7}\times 6+\frac{1}{7}\times 36\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
পাটিগণিত করুন।
x=2,y=6
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-3x+2y=6,3x+5y=36
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\left(-3\right)x+3\times 2y=3\times 6,-3\times 3x-3\times 5y=-3\times 36
-3x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -3 দিয়ে গুণ করুন।
-9x+6y=18,-9x-15y=-108
সিমপ্লিফাই।
-9x+9x+6y+15y=18+108
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -9x+6y=18 থেকে -9x-15y=-108 বাদ দিন।
6y+15y=18+108
9x এ -9x যোগ করুন। টার্ম -9x এবং 9x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
21y=18+108
15y এ 6y যোগ করুন।
21y=126
108 এ 18 যোগ করুন।
y=6
21 দিয়ে উভয় দিককে ভাগ করুন।
3x+5\times 6=36
3x+5y=36 এ y এর জন্য পরিবর্ত হিসাবে 6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x+30=36
5 কে 6 বার গুণ করুন।
3x=6
সমীকরণের উভয় দিক থেকে 30 বাদ দিন।
x=2
3 দিয়ে উভয় দিককে ভাগ করুন।
x=2,y=6
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}