মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-2x+y=-1,4x-y=-3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-2x+y=-1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-2x=-y-1
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=-\frac{1}{2}\left(-y-1\right)
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{2}y+\frac{1}{2}
-\frac{1}{2} কে -y-1 বার গুণ করুন।
4\left(\frac{1}{2}y+\frac{1}{2}\right)-y=-3
অন্য সমীকরণ 4x-y=-3 এ x এর জন্য \frac{1+y}{2} বিপরীত করু ন।
2y+2-y=-3
4 কে \frac{1+y}{2} বার গুণ করুন।
y+2=-3
-y এ 2y যোগ করুন।
y=-5
সমীকরণের উভয় দিক থেকে 2 বাদ দিন।
x=\frac{1}{2}\left(-5\right)+\frac{1}{2}
x=\frac{1}{2}y+\frac{1}{2} এ y এর জন্য পরিবর্ত হিসাবে -5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-5+1}{2}
\frac{1}{2} কে -5 বার গুণ করুন।
x=-2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{5}{2} এ \frac{1}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-2,y=-5
সিস্টেম এখন সমাধান করা হয়েছে।
-2x+y=-1,4x-y=-3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-2\left(-1\right)-4}&-\frac{1}{-2\left(-1\right)-4}\\-\frac{4}{-2\left(-1\right)-4}&-\frac{2}{-2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\2&1\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-3\right)\\2\left(-1\right)-3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-5\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=-5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-2x+y=-1,4x-y=-3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4\left(-2\right)x+4y=4\left(-1\right),-2\times 4x-2\left(-1\right)y=-2\left(-3\right)
-2x এবং 4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন।
-8x+4y=-4,-8x+2y=6
সিমপ্লিফাই।
-8x+8x+4y-2y=-4-6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -8x+4y=-4 থেকে -8x+2y=6 বাদ দিন।
4y-2y=-4-6
8x এ -8x যোগ করুন। টার্ম -8x এবং 8x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2y=-4-6
-2y এ 4y যোগ করুন।
2y=-10
-6 এ -4 যোগ করুন।
y=-5
2 দিয়ে উভয় দিককে ভাগ করুন।
4x-\left(-5\right)=-3
4x-y=-3 এ y এর জন্য পরিবর্ত হিসাবে -5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
4x=-8
সমীকরণের উভয় দিক থেকে 5 বাদ দিন।
x=-2
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=-5
সিস্টেম এখন সমাধান করা হয়েছে।