\left. \begin{array} { l } { -8 r - 3 = -5 r + 9 }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { z = y }\\ { a = z }\\ { \text{Solve for } b \text{ where} } \\ { b = a } \end{array} \right.
r, s, t, u, v, w, x, y, z, a, b এর জন্য সমাধান করুন
b=-4
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-8r-3+5r=9
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 5r যোগ করুন৷
-3r-3=9
-3r পেতে -8r এবং 5r একত্রিত করুন।
-3r=9+3
উভয় সাইডে 3 যোগ করুন৷
-3r=12
12 পেতে 9 এবং 3 যোগ করুন।
r=\frac{12}{-3}
-3 দিয়ে উভয় দিককে ভাগ করুন।
r=-4
-4 পেতে 12 কে -3 দিয়ে ভাগ করুন।
s=-4
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
t=-4
তৃতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
u=-4
চতুর্থ সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
v=-4
পঞ্চম সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
w=-4
সমীকরণটি বিবেচনা করুন (6)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
x=-4
সমীকরণটি বিবেচনা করুন (7)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
y=-4
সমীকরণটি বিবেচনা করুন (8)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
z=-4
সমীকরণটি বিবেচনা করুন (9)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
a=-4
সমীকরণটি বিবেচনা করুন (10)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
b=-4
সমীকরণটি বিবেচনা করুন (11)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
r=-4 s=-4 t=-4 u=-4 v=-4 w=-4 x=-4 y=-4 z=-4 a=-4 b=-4
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}