\left. \begin{array} { l } { -4 {(q - 14)} = -16 }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { z = y }\\ { a = z }\\ { b = a }\\ { c = b }\\ { \text{Solve for } d \text{ where} } \\ { d = c } \end{array} \right.
q, r, s, t, u, v, w, x, y, z, a, b, c, d এর জন্য সমাধান করুন
d=18
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
q-14=\frac{-16}{-4}
প্রথম সমীকরণটির সরলীকরণ করুন। -4 দিয়ে উভয় দিককে ভাগ করুন।
q-14=4
4 পেতে -16 কে -4 দিয়ে ভাগ করুন।
q=4+14
উভয় সাইডে 14 যোগ করুন৷
q=18
18 পেতে 4 এবং 14 যোগ করুন।
r=18
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
s=18
তৃতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
t=18
চতুর্থ সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
u=18
পঞ্চম সমীকরণটি সরলীকরণ করুন। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
v=18
সমীকরণটি বিবেচনা করুন (6)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
w=18
সমীকরণটি বিবেচনা করুন (7)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
x=18
সমীকরণটি বিবেচনা করুন (8)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
y=18
সমীকরণটি বিবেচনা করুন (9)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
z=18
সমীকরণটি বিবেচনা করুন (10)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
a=18
সমীকরণটি বিবেচনা করুন (11)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
b=18
সমীকরণটি বিবেচনা করুন (12)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
c=18
সমীকরণটি বিবেচনা করুন (13)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
d=18
সমীকরণটি বিবেচনা করুন (14)। সমীকরণের ভেরিয়েবলগুলির পরিচিত মানগুলি ঢোকান।
q=18 r=18 s=18 t=18 u=18 v=18 w=18 x=18 y=18 z=18 a=18 b=18 c=18 d=18
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}