মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x-3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=3
উভয় সাইডে 3 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=37
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
x-y=3,4x-3y=37
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-y=3
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=y+3
সমীকরণের উভয় দিকে y যোগ করুন।
4\left(y+3\right)-3y=37
অন্য সমীকরণ 4x-3y=37 এ x এর জন্য y+3 বিপরীত করু ন।
4y+12-3y=37
4 কে y+3 বার গুণ করুন।
y+12=37
-3y এ 4y যোগ করুন।
y=25
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
x=25+3
x=y+3 এ y এর জন্য পরিবর্ত হিসাবে 25 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=28
25 এ 3 যোগ করুন।
x=28,y=25
সিস্টেম এখন সমাধান করা হয়েছে।
x-3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=3
উভয় সাইডে 3 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=37
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
x-y=3,4x-3y=37
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\37\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-4\right)}&-\frac{-1}{-3-\left(-4\right)}\\-\frac{4}{-3-\left(-4\right)}&\frac{1}{-3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}3\\37\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}3\\37\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 3+37\\-4\times 3+37\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\25\end{matrix}\right)
পাটিগণিত করুন।
x=28,y=25
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=3
উভয় সাইডে 3 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=37
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
x-y=3,4x-3y=37
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4x+4\left(-1\right)y=4\times 3,4x-3y=37
x এবং 4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
4x-4y=12,4x-3y=37
সিমপ্লিফাই।
4x-4x-4y+3y=12-37
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 4x-4y=12 থেকে 4x-3y=37 বাদ দিন।
-4y+3y=12-37
-4x এ 4x যোগ করুন। টার্ম 4x এবং -4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=12-37
3y এ -4y যোগ করুন।
-y=-25
-37 এ 12 যোগ করুন।
y=25
-1 দিয়ে উভয় দিককে ভাগ করুন।
4x-3\times 25=37
4x-3y=37 এ y এর জন্য পরিবর্ত হিসাবে 25 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
4x-75=37
-3 কে 25 বার গুণ করুন।
4x=112
সমীকরণের উভয় দিকে 75 যোগ করুন।
x=28
4 দিয়ে উভয় দিককে ভাগ করুন।
x=28,y=25
সিস্টেম এখন সমাধান করা হয়েছে।