x, y এর জন্য সমাধান করুন
x=400
y=100
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x+y=500,50x+80y=28000
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=500
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+500
সমীকরণের উভয় দিক থেকে y বাদ দিন।
50\left(-y+500\right)+80y=28000
অন্য সমীকরণ 50x+80y=28000 এ x এর জন্য -y+500 বিপরীত করু ন।
-50y+25000+80y=28000
50 কে -y+500 বার গুণ করুন।
30y+25000=28000
80y এ -50y যোগ করুন।
30y=3000
সমীকরণের উভয় দিক থেকে 25000 বাদ দিন।
y=100
30 দিয়ে উভয় দিককে ভাগ করুন।
x=-100+500
x=-y+500 এ y এর জন্য পরিবর্ত হিসাবে 100 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=400
-100 এ 500 যোগ করুন।
x=400,y=100
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=500,50x+80y=28000
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\50&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\28000\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}1&1\\50&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
\left(\begin{matrix}1&1\\50&80\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-50}&-\frac{1}{80-50}\\-\frac{50}{80-50}&\frac{1}{80-50}\end{matrix}\right)\left(\begin{matrix}500\\28000\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}&-\frac{1}{30}\\-\frac{5}{3}&\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}500\\28000\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\times 500-\frac{1}{30}\times 28000\\-\frac{5}{3}\times 500+\frac{1}{30}\times 28000\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\100\end{matrix}\right)
পাটিগণিত করুন।
x=400,y=100
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=500,50x+80y=28000
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
50x+50y=50\times 500,50x+80y=28000
x এবং 50x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 50 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
50x+50y=25000,50x+80y=28000
সিমপ্লিফাই।
50x-50x+50y-80y=25000-28000
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 50x+50y=25000 থেকে 50x+80y=28000 বাদ দিন।
50y-80y=25000-28000
-50x এ 50x যোগ করুন। টার্ম 50x এবং -50x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-30y=25000-28000
-80y এ 50y যোগ করুন।
-30y=-3000
-28000 এ 25000 যোগ করুন।
y=100
-30 দিয়ে উভয় দিককে ভাগ করুন।
50x+80\times 100=28000
50x+80y=28000 এ y এর জন্য পরিবর্ত হিসাবে 100 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
50x+8000=28000
80 কে 100 বার গুণ করুন।
50x=20000
সমীকরণের উভয় দিক থেকে 8000 বাদ দিন।
x=400
50 দিয়ে উভয় দিককে ভাগ করুন।
x=400,y=100
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}