মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x+5y=6,x+7y=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x+5y=6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=-5y+6
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=\frac{1}{4}\left(-5y+6\right)
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{4}y+\frac{3}{2}
\frac{1}{4} কে -5y+6 বার গুণ করুন।
-\frac{5}{4}y+\frac{3}{2}+7y=3
অন্য সমীকরণ x+7y=3 এ x এর জন্য -\frac{5y}{4}+\frac{3}{2} বিপরীত করু ন।
\frac{23}{4}y+\frac{3}{2}=3
7y এ -\frac{5y}{4} যোগ করুন।
\frac{23}{4}y=\frac{3}{2}
সমীকরণের উভয় দিক থেকে \frac{3}{2} বাদ দিন।
y=\frac{6}{23}
\frac{23}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{5}{4}\times \frac{6}{23}+\frac{3}{2}
x=-\frac{5}{4}y+\frac{3}{2} এ y এর জন্য পরিবর্ত হিসাবে \frac{6}{23} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{15}{46}+\frac{3}{2}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{5}{4} কে \frac{6}{23} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{27}{23}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{15}{46} এ \frac{3}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{27}{23},y=\frac{6}{23}
সিস্টেম এখন সমাধান করা হয়েছে।
4x+5y=6,x+7y=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
\left(\begin{matrix}4&5\\1&7\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4\times 7-5}&-\frac{5}{4\times 7-5}\\-\frac{1}{4\times 7-5}&\frac{4}{4\times 7-5}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}&-\frac{5}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}\times 6-\frac{5}{23}\times 3\\-\frac{1}{23}\times 6+\frac{4}{23}\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{23}\\\frac{6}{23}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{27}{23},y=\frac{6}{23}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x+5y=6,x+7y=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4x+5y=6,4x+4\times 7y=4\times 3
4x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন।
4x+5y=6,4x+28y=12
সিমপ্লিফাই।
4x-4x+5y-28y=6-12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 4x+5y=6 থেকে 4x+28y=12 বাদ দিন।
5y-28y=6-12
-4x এ 4x যোগ করুন। টার্ম 4x এবং -4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-23y=6-12
-28y এ 5y যোগ করুন।
-23y=-6
-12 এ 6 যোগ করুন।
y=\frac{6}{23}
-23 দিয়ে উভয় দিককে ভাগ করুন।
x+7\times \frac{6}{23}=3
x+7y=3 এ y এর জন্য পরিবর্ত হিসাবে \frac{6}{23} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+\frac{42}{23}=3
7 কে \frac{6}{23} বার গুণ করুন।
x=\frac{27}{23}
সমীকরণের উভয় দিক থেকে \frac{42}{23} বাদ দিন।
x=\frac{27}{23},y=\frac{6}{23}
সিস্টেম এখন সমাধান করা হয়েছে।