x, y এর জন্য সমাধান করুন
x=5
y=0
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x+3y=10
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 10 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=20
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
2x+3y=10,4x-3y=20
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+3y=10
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-3y+10
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{2}\left(-3y+10\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{2}y+5
\frac{1}{2} কে -3y+10 বার গুণ করুন।
4\left(-\frac{3}{2}y+5\right)-3y=20
অন্য সমীকরণ 4x-3y=20 এ x এর জন্য -\frac{3y}{2}+5 বিপরীত করু ন।
-6y+20-3y=20
4 কে -\frac{3y}{2}+5 বার গুণ করুন।
-9y+20=20
-3y এ -6y যোগ করুন।
-9y=0
সমীকরণের উভয় দিক থেকে 20 বাদ দিন।
y=0
-9 দিয়ে উভয় দিককে ভাগ করুন।
x=5
x=-\frac{3}{2}y+5 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=5,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
2x+3y=10
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 10 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=20
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
2x+3y=10,4x-3y=20
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
পাটিগণিত করুন।
x=5,y=0
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+3y=10
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 10 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
4x-3y=20
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3y বিয়োগ করুন।
2x+3y=10,4x-3y=20
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
2x এবং 4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
8x+12y=40,8x-6y=40
সিমপ্লিফাই।
8x-8x+12y+6y=40-40
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 8x+12y=40 থেকে 8x-6y=40 বাদ দিন।
12y+6y=40-40
-8x এ 8x যোগ করুন। টার্ম 8x এবং -8x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
18y=40-40
6y এ 12y যোগ করুন।
18y=0
-40 এ 40 যোগ করুন।
y=0
18 দিয়ে উভয় দিককে ভাগ করুন।
4x=20
4x-3y=20 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=5
4 দিয়ে উভয় দিককে ভাগ করুন।
x=5,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}