মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x+3y=-10,x+4y=5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+3y=-10
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-3y-10
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{2}\left(-3y-10\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{2}y-5
\frac{1}{2} কে -3y-10 বার গুণ করুন।
-\frac{3}{2}y-5+4y=5
অন্য সমীকরণ x+4y=5 এ x এর জন্য -\frac{3y}{2}-5 বিপরীত করু ন।
\frac{5}{2}y-5=5
4y এ -\frac{3y}{2} যোগ করুন।
\frac{5}{2}y=10
সমীকরণের উভয় দিকে 5 যোগ করুন।
y=4
\frac{5}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{2}\times 4-5
x=-\frac{3}{2}y-5 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-6-5
-\frac{3}{2} কে 4 বার গুণ করুন।
x=-11
-6 এ -5 যোগ করুন।
x=-11,y=4
সিস্টেম এখন সমাধান করা হয়েছে।
2x+3y=-10,x+4y=5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
\left(\begin{matrix}2&3\\1&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{3}{2\times 4-3}\\-\frac{1}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-10\right)-\frac{3}{5}\times 5\\-\frac{1}{5}\left(-10\right)+\frac{2}{5}\times 5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\4\end{matrix}\right)
পাটিগণিত করুন।
x=-11,y=4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+3y=-10,x+4y=5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x+3y=-10,2x+2\times 4y=2\times 5
2x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
2x+3y=-10,2x+8y=10
সিমপ্লিফাই।
2x-2x+3y-8y=-10-10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+3y=-10 থেকে 2x+8y=10 বাদ দিন।
3y-8y=-10-10
-2x এ 2x যোগ করুন। টার্ম 2x এবং -2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5y=-10-10
-8y এ 3y যোগ করুন।
-5y=-20
-10 এ -10 যোগ করুন।
y=4
-5 দিয়ে উভয় দিককে ভাগ করুন।
x+4\times 4=5
x+4y=5 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+16=5
4 কে 4 বার গুণ করুন।
x=-11
সমীকরণের উভয় দিক থেকে 16 বাদ দিন।
x=-11,y=4
সিস্টেম এখন সমাধান করা হয়েছে।