মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

10x+14y=460,x+y=40
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
10x+14y=460
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
10x=-14y+460
সমীকরণের উভয় দিক থেকে 14y বাদ দিন।
x=\frac{1}{10}\left(-14y+460\right)
10 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{7}{5}y+46
\frac{1}{10} কে -14y+460 বার গুণ করুন।
-\frac{7}{5}y+46+y=40
অন্য সমীকরণ x+y=40 এ x এর জন্য -\frac{7y}{5}+46 বিপরীত করু ন।
-\frac{2}{5}y+46=40
y এ -\frac{7y}{5} যোগ করুন।
-\frac{2}{5}y=-6
সমীকরণের উভয় দিক থেকে 46 বাদ দিন।
y=15
-\frac{2}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{7}{5}\times 15+46
x=-\frac{7}{5}y+46 এ y এর জন্য পরিবর্ত হিসাবে 15 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-21+46
-\frac{7}{5} কে 15 বার গুণ করুন।
x=25
-21 এ 46 যোগ করুন।
x=25,y=15
সিস্টেম এখন সমাধান করা হয়েছে।
10x+14y=460,x+y=40
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}10&14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\40\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}10&14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
\left(\begin{matrix}10&14\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-14}&-\frac{14}{10-14}\\-\frac{1}{10-14}&\frac{10}{10-14}\end{matrix}\right)\left(\begin{matrix}460\\40\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{7}{2}\\\frac{1}{4}&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}460\\40\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 460+\frac{7}{2}\times 40\\\frac{1}{4}\times 460-\frac{5}{2}\times 40\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
পাটিগণিত করুন।
x=25,y=15
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
10x+14y=460,x+y=40
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
10x+14y=460,10x+10y=10\times 40
10x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 10 দিয়ে গুণ করুন।
10x+14y=460,10x+10y=400
সিমপ্লিফাই।
10x-10x+14y-10y=460-400
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x+14y=460 থেকে 10x+10y=400 বাদ দিন।
14y-10y=460-400
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
4y=460-400
-10y এ 14y যোগ করুন।
4y=60
-400 এ 460 যোগ করুন।
y=15
4 দিয়ে উভয় দিককে ভাগ করুন।
x+15=40
x+y=40 এ y এর জন্য পরিবর্ত হিসাবে 15 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=25
সমীকরণের উভয় দিক থেকে 15 বাদ দিন।
x=25,y=15
সিস্টেম এখন সমাধান করা হয়েছে।