y, x এর জন্য সমাধান করুন
x=4
y=10
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-5y+8x=-18,5y+2x=58
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-5y+8x=-18
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
-5y=-8x-18
সমীকরণের উভয় দিক থেকে 8x বাদ দিন।
y=-\frac{1}{5}\left(-8x-18\right)
-5 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{8}{5}x+\frac{18}{5}
-\frac{1}{5} কে -8x-18 বার গুণ করুন।
5\left(\frac{8}{5}x+\frac{18}{5}\right)+2x=58
অন্য সমীকরণ 5y+2x=58 এ y এর জন্য \frac{8x+18}{5} বিপরীত করু ন।
8x+18+2x=58
5 কে \frac{8x+18}{5} বার গুণ করুন।
10x+18=58
2x এ 8x যোগ করুন।
10x=40
সমীকরণের উভয় দিক থেকে 18 বাদ দিন।
x=4
10 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{8}{5}\times 4+\frac{18}{5}
y=\frac{8}{5}x+\frac{18}{5} এ x এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=\frac{32+18}{5}
\frac{8}{5} কে 4 বার গুণ করুন।
y=10
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{32}{5} এ \frac{18}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
y=10,x=4
সিস্টেম এখন সমাধান করা হয়েছে।
-5y+8x=-18,5y+2x=58
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\58\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
\left(\begin{matrix}-5&8\\5&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-8\times 5}&-\frac{8}{-5\times 2-8\times 5}\\-\frac{5}{-5\times 2-8\times 5}&-\frac{5}{-5\times 2-8\times 5}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}&\frac{4}{25}\\\frac{1}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}\left(-18\right)+\frac{4}{25}\times 58\\\frac{1}{10}\left(-18\right)+\frac{1}{10}\times 58\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\4\end{matrix}\right)
পাটিগণিত করুন।
y=10,x=4
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
-5y+8x=-18,5y+2x=58
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\left(-5\right)y+5\times 8x=5\left(-18\right),-5\times 5y-5\times 2x=-5\times 58
-5y এবং 5y সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -5 দিয়ে গুণ করুন।
-25y+40x=-90,-25y-10x=-290
সিমপ্লিফাই।
-25y+25y+40x+10x=-90+290
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -25y+40x=-90 থেকে -25y-10x=-290 বাদ দিন।
40x+10x=-90+290
25y এ -25y যোগ করুন। টার্ম -25y এবং 25y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
50x=-90+290
10x এ 40x যোগ করুন।
50x=200
290 এ -90 যোগ করুন।
x=4
50 দিয়ে উভয় দিককে ভাগ করুন।
5y+2\times 4=58
5y+2x=58 এ x এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
5y+8=58
2 কে 4 বার গুণ করুন।
5y=50
সমীকরণের উভয় দিক থেকে 8 বাদ দিন।
y=10
5 দিয়ে উভয় দিককে ভাগ করুন।
y=10,x=4
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}