মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-2x+9y=8,x-2y=6
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-2x+9y=8
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-2x=-9y+8
সমীকরণের উভয় দিক থেকে 9y বাদ দিন।
x=-\frac{1}{2}\left(-9y+8\right)
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{9}{2}y-4
-\frac{1}{2} কে -9y+8 বার গুণ করুন।
\frac{9}{2}y-4-2y=6
অন্য সমীকরণ x-2y=6 এ x এর জন্য \frac{9y}{2}-4 বিপরীত করু ন।
\frac{5}{2}y-4=6
-2y এ \frac{9y}{2} যোগ করুন।
\frac{5}{2}y=10
সমীকরণের উভয় দিকে 4 যোগ করুন।
y=4
\frac{5}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{9}{2}\times 4-4
x=\frac{9}{2}y-4 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=18-4
\frac{9}{2} কে 4 বার গুণ করুন।
x=14
18 এ -4 যোগ করুন।
x=14,y=4
সিস্টেম এখন সমাধান করা হয়েছে।
-2x+9y=8,x-2y=6
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-9}&-\frac{9}{-2\left(-2\right)-9}\\-\frac{1}{-2\left(-2\right)-9}&-\frac{2}{-2\left(-2\right)-9}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{9}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{9}{5}\times 6\\\frac{1}{5}\times 8+\frac{2}{5}\times 6\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
পাটিগণিত করুন।
x=14,y=4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-2x+9y=8,x-2y=6
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2x+9y=8,-2x-2\left(-2\right)y=-2\times 6
-2x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন।
-2x+9y=8,-2x+4y=-12
সিমপ্লিফাই।
-2x+2x+9y-4y=8+12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -2x+9y=8 থেকে -2x+4y=-12 বাদ দিন।
9y-4y=8+12
2x এ -2x যোগ করুন। টার্ম -2x এবং 2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
5y=8+12
-4y এ 9y যোগ করুন।
5y=20
12 এ 8 যোগ করুন।
y=4
5 দিয়ে উভয় দিককে ভাগ করুন।
x-2\times 4=6
x-2y=6 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x-8=6
-2 কে 4 বার গুণ করুন।
x=14
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=14,y=4
সিস্টেম এখন সমাধান করা হয়েছে।