মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
\frac{1}{10}x+\frac{1}{2}y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
\frac{1}{10}x=-\frac{1}{2}y+1
সমীকরণের উভয় দিক থেকে \frac{y}{2} বাদ দিন।
x=10\left(-\frac{1}{2}y+1\right)
10 দিয়ে উভয় দিককে গুণ করুন।
x=-5y+10
10 কে -\frac{y}{2}+1 বার গুণ করুন।
2\left(-5y+10\right)-10y=-20
অন্য সমীকরণ 2x-10y=-20 এ x এর জন্য -5y+10 বিপরীত করু ন।
-10y+20-10y=-20
2 কে -5y+10 বার গুণ করুন।
-20y+20=-20
-10y এ -10y যোগ করুন।
-20y=-40
সমীকরণের উভয় দিক থেকে 20 বাদ দিন।
y=2
-20 দিয়ে উভয় দিককে ভাগ করুন।
x=-5\times 2+10
x=-5y+10 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-10+10
-5 কে 2 বার গুণ করুন।
x=0
-10 এ 10 যোগ করুন।
x=0,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-20\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&-\frac{\frac{1}{2}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\\-\frac{2}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&\frac{\frac{1}{10}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&\frac{1}{4}\\1&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5+\frac{1}{4}\left(-20\right)\\1-\frac{1}{20}\left(-20\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
পাটিগণিত করুন।
x=0,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times \frac{1}{10}x+2\times \frac{1}{2}y=2,\frac{1}{10}\times 2x+\frac{1}{10}\left(-10\right)y=\frac{1}{10}\left(-20\right)
\frac{x}{10} এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে \frac{1}{10} দিয়ে গুণ করুন।
\frac{1}{5}x+y=2,\frac{1}{5}x-y=-2
সিমপ্লিফাই।
\frac{1}{5}x-\frac{1}{5}x+y+y=2+2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে \frac{1}{5}x+y=2 থেকে \frac{1}{5}x-y=-2 বাদ দিন।
y+y=2+2
-\frac{x}{5} এ \frac{x}{5} যোগ করুন। টার্ম \frac{x}{5} এবং -\frac{x}{5} বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2y=2+2
y এ y যোগ করুন।
2y=4
2 এ 2 যোগ করুন।
y=2
2 দিয়ে উভয় দিককে ভাগ করুন।
2x-10\times 2=-20
2x-10y=-20 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x-20=-20
-10 কে 2 বার গুণ করুন।
2x=0
সমীকরণের উভয় দিকে 20 যোগ করুন।
x=0
2 দিয়ে উভয় দিককে ভাগ করুন।
x=0,y=2
সিস্টেম এখন সমাধান করা হয়েছে।