\left| \begin{array} { c c c } { i } & { j } & { k } \\ { 1 } & { - 2 } & { 2 } \\ { 3 } & { 2 } & { 0 } \end{array} \right|
মূল্যায়ন করুন
6j+8k-4i
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
det(\left(\begin{matrix}i&j&k\\1&-2&2\\3&2&0\end{matrix}\right))
ডায়গোনাল পদ্ধতি ব্যবহার করে ম্যাট্রিক্সের নির্ণায়ক বের করুন।
\left(\begin{matrix}i&j&k&i&j\\1&-2&2&1&-2\\3&2&0&3&2\end{matrix}\right)
প্রথম দুটি কলাম চার ও পাঁচ নং কলাম হিসাবে পুনরাবৃত্তির মাধ্যমে আসল ম্যাট্রিক্স সম্প্রসারণ করুন।
j\times 2\times 3+k\times 2=6j+2k
উপরের বাম দিক থেকে শুরু করে ডায়গোনালের সঙ্গে নিচে গুণ করুন এবং গুণফল যোগ করুন।
3\left(-2\right)k+2\times \left(2i\right)=4i-6k
নিচের বাম দিক থেকে শুরু করে ডায়গোনালের সঙ্গে উপরের গুণ করুন এবং গুণফল যোগ করুন।
6j+2k-\left(4i-6k\right)
উর্ধ্বগামী ডায়গোনাল গুণফলের সমষ্টি থেকে নিম্নগামী ডায়গোনাল গুণফলের সমষ্টি বাদ দিন।
6j+8k-4i
6j+2k থেকে -6k+4i বাদ দিন।
det(\left(\begin{matrix}i&j&k\\1&-2&2\\3&2&0\end{matrix}\right))
এক্সপ্যানসেন বাই মানরস (এছাড়াও এক্সপ্যানসন বাই কোফাক্টর্স নামেও পরিচিতি)পদ্ধতি ব্যবহার করে ম্যাট্রিক্সের নির্ণায়ক বের করুন।
idet(\left(\begin{matrix}-2&2\\2&0\end{matrix}\right))-jdet(\left(\begin{matrix}1&2\\3&0\end{matrix}\right))+kdet(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))
মাইনরগুলির দ্বারা প্রসারিত করতে, প্রথম সারির প্রতিটি উপাদানকে তার মাইনর দিয়ে গুণ করুন যা সেই উপাদান বহনকারী সারি ও কলাম মুছে তৈরি করা 2\times 2 ম্যাট্রিক্সের নির্ণায়ক, তারপর উপাদানের অবস্থানের চিহ্ন দিয়ে গুণ করুন।
i\left(-2\times 2\right)-j\left(-3\times 2\right)+k\left(2-3\left(-2\right)\right)
2\times 2 ম্যাট্রিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right) এর জন্য, নির্ণায়ক হল ad-bc।
-4i-j\left(-6\right)+k\times 8
সিমপ্লিফাই।
6j+8k-4i
চূড়ান্ত ফলাফল পাওয়ার জন্য টার্মগুলো যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}