মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

7x+3y=-15,-5x+12y=39
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
7x+3y=-15
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
7x=-3y-15
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{7}\left(-3y-15\right)
7 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{7}y-\frac{15}{7}
\frac{1}{7} কে -3y-15 বার গুণ করুন।
-5\left(-\frac{3}{7}y-\frac{15}{7}\right)+12y=39
অন্য সমীকরণ -5x+12y=39 এ x এর জন্য \frac{-3y-15}{7} বিপরীত করু ন।
\frac{15}{7}y+\frac{75}{7}+12y=39
-5 কে \frac{-3y-15}{7} বার গুণ করুন।
\frac{99}{7}y+\frac{75}{7}=39
12y এ \frac{15y}{7} যোগ করুন।
\frac{99}{7}y=\frac{198}{7}
সমীকরণের উভয় দিক থেকে \frac{75}{7} বাদ দিন।
y=2
\frac{99}{7} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{7}\times 2-\frac{15}{7}
x=-\frac{3}{7}y-\frac{15}{7} এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-6-15}{7}
-\frac{3}{7} কে 2 বার গুণ করুন।
x=-3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{6}{7} এ -\frac{15}{7} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
7x+3y=-15,-5x+12y=39
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\39\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7\times 12-3\left(-5\right)}&-\frac{3}{7\times 12-3\left(-5\right)}\\-\frac{-5}{7\times 12-3\left(-5\right)}&\frac{7}{7\times 12-3\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}&-\frac{1}{33}\\\frac{5}{99}&\frac{7}{99}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}\left(-15\right)-\frac{1}{33}\times 39\\\frac{5}{99}\left(-15\right)+\frac{7}{99}\times 39\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
পাটিগণিত করুন।
x=-3,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
7x+3y=-15,-5x+12y=39
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5\times 7x-5\times 3y=-5\left(-15\right),7\left(-5\right)x+7\times 12y=7\times 39
7x এবং -5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন।
-35x-15y=75,-35x+84y=273
সিমপ্লিফাই।
-35x+35x-15y-84y=75-273
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -35x-15y=75 থেকে -35x+84y=273 বাদ দিন।
-15y-84y=75-273
35x এ -35x যোগ করুন। টার্ম -35x এবং 35x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-99y=75-273
-84y এ -15y যোগ করুন।
-99y=-198
-273 এ 75 যোগ করুন।
y=2
-99 দিয়ে উভয় দিককে ভাগ করুন।
-5x+12\times 2=39
-5x+12y=39 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-5x+24=39
12 কে 2 বার গুণ করুন।
-5x=15
সমীকরণের উভয় দিক থেকে 24 বাদ দিন।
x=-3
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=-3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।