\left\{ \begin{array} { r } { 5 p - q = 7 } \\ { - 2 p + 3 q = 5 } \end{array} \right.
p, q এর জন্য সমাধান করুন
p=2
q=3
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
5p-q=7,-2p+3q=5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5p-q=7
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের p পৃথক করে p-এর জন্য সমাধান করুন।
5p=q+7
সমীকরণের উভয় দিকে q যোগ করুন।
p=\frac{1}{5}\left(q+7\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
p=\frac{1}{5}q+\frac{7}{5}
\frac{1}{5} কে q+7 বার গুণ করুন।
-2\left(\frac{1}{5}q+\frac{7}{5}\right)+3q=5
অন্য সমীকরণ -2p+3q=5 এ p এর জন্য \frac{7+q}{5} বিপরীত করু ন।
-\frac{2}{5}q-\frac{14}{5}+3q=5
-2 কে \frac{7+q}{5} বার গুণ করুন।
\frac{13}{5}q-\frac{14}{5}=5
3q এ -\frac{2q}{5} যোগ করুন।
\frac{13}{5}q=\frac{39}{5}
সমীকরণের উভয় দিকে \frac{14}{5} যোগ করুন।
q=3
\frac{13}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
p=\frac{1}{5}\times 3+\frac{7}{5}
p=\frac{1}{5}q+\frac{7}{5} এ q এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি p এর জন্য সরাসরি সমাধান করতে পারেন।
p=\frac{3+7}{5}
\frac{1}{5} কে 3 বার গুণ করুন।
p=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{3}{5} এ \frac{7}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
p=2,q=3
সিস্টেম এখন সমাধান করা হয়েছে।
5p-q=7,-2p+3q=5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 3-\left(-\left(-2\right)\right)}&\frac{5}{5\times 3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 7+\frac{1}{13}\times 5\\\frac{2}{13}\times 7+\frac{5}{13}\times 5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
পাটিগণিত করুন।
p=2,q=3
ম্যাট্রিক্স এলিমেন্ট p এবং q বের করুন।
5p-q=7,-2p+3q=5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2\times 5p-2\left(-1\right)q=-2\times 7,5\left(-2\right)p+5\times 3q=5\times 5
5p এবং -2p সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-10p+2q=-14,-10p+15q=25
সিমপ্লিফাই।
-10p+10p+2q-15q=-14-25
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -10p+2q=-14 থেকে -10p+15q=25 বাদ দিন।
2q-15q=-14-25
10p এ -10p যোগ করুন। টার্ম -10p এবং 10p বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-13q=-14-25
-15q এ 2q যোগ করুন।
-13q=-39
-25 এ -14 যোগ করুন।
q=3
-13 দিয়ে উভয় দিককে ভাগ করুন।
-2p+3\times 3=5
-2p+3q=5 এ q এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি p এর জন্য সরাসরি সমাধান করতে পারেন।
-2p+9=5
3 কে 3 বার গুণ করুন।
-2p=-4
সমীকরণের উভয় দিক থেকে 9 বাদ দিন।
p=2
-2 দিয়ে উভয় দিককে ভাগ করুন।
p=2,q=3
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}