মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y-3x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y-3x=-2,4y+5x=9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
y-3x=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
y=3x-2
সমীকরণের উভয় দিকে 3x যোগ করুন।
4\left(3x-2\right)+5x=9
অন্য সমীকরণ 4y+5x=9 এ y এর জন্য 3x-2 বিপরীত করু ন।
12x-8+5x=9
4 কে 3x-2 বার গুণ করুন।
17x-8=9
5x এ 12x যোগ করুন।
17x=17
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=1
17 দিয়ে উভয় দিককে ভাগ করুন।
y=3-2
y=3x-2 এ x এর জন্য পরিবর্ত হিসাবে 1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=1
3 এ -2 যোগ করুন।
y=1,x=1
সিস্টেম এখন সমাধান করা হয়েছে।
y-3x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y-3x=-2,4y+5x=9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}1&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
\left(\begin{matrix}1&-3\\4&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-3\times 4\right)}&-\frac{-3}{5-\left(-3\times 4\right)}\\-\frac{4}{5-\left(-3\times 4\right)}&\frac{1}{5-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{3}{17}\\-\frac{4}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-2\\9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\left(-2\right)+\frac{3}{17}\times 9\\-\frac{4}{17}\left(-2\right)+\frac{1}{17}\times 9\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
পাটিগণিত করুন।
y=1,x=1
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
y-3x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y-3x=-2,4y+5x=9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4y+4\left(-3\right)x=4\left(-2\right),4y+5x=9
y এবং 4y সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
4y-12x=-8,4y+5x=9
সিমপ্লিফাই।
4y-4y-12x-5x=-8-9
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 4y-12x=-8 থেকে 4y+5x=9 বাদ দিন।
-12x-5x=-8-9
-4y এ 4y যোগ করুন। টার্ম 4y এবং -4y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-17x=-8-9
-5x এ -12x যোগ করুন।
-17x=-17
-9 এ -8 যোগ করুন।
x=1
-17 দিয়ে উভয় দিককে ভাগ করুন।
4y+5=9
4y+5x=9 এ x এর জন্য পরিবর্ত হিসাবে 1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
4y=4
সমীকরণের উভয় দিক থেকে 5 বাদ দিন।
y=1
4 দিয়ে উভয় দিককে ভাগ করুন।
y=1,x=1
সিস্টেম এখন সমাধান করা হয়েছে।