মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y-2x=-5
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2x বিয়োগ করুন।
y+4x=7
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y-2x=-5,y+4x=7
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
y-2x=-5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
y=2x-5
সমীকরণের উভয় দিকে 2x যোগ করুন।
2x-5+4x=7
অন্য সমীকরণ y+4x=7 এ y এর জন্য 2x-5 বিপরীত করু ন।
6x-5=7
4x এ 2x যোগ করুন।
6x=12
সমীকরণের উভয় দিকে 5 যোগ করুন।
x=2
6 দিয়ে উভয় দিককে ভাগ করুন।
y=2\times 2-5
y=2x-5 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=4-5
2 কে 2 বার গুণ করুন।
y=-1
4 এ -5 যোগ করুন।
y=-1,x=2
সিস্টেম এখন সমাধান করা হয়েছে।
y-2x=-5
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2x বিয়োগ করুন।
y+4x=7
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y-2x=-5,y+4x=7
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\7\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-2}{4-\left(-2\right)}\\-\frac{1}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-5\right)+\frac{1}{3}\times 7\\-\frac{1}{6}\left(-5\right)+\frac{1}{6}\times 7\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
পাটিগণিত করুন।
y=-1,x=2
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
y-2x=-5
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2x বিয়োগ করুন।
y+4x=7
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y-2x=-5,y+4x=7
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
y-y-2x-4x=-5-7
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে y-2x=-5 থেকে y+4x=7 বাদ দিন।
-2x-4x=-5-7
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-6x=-5-7
-4x এ -2x যোগ করুন।
-6x=-12
-7 এ -5 যোগ করুন।
x=2
-6 দিয়ে উভয় দিককে ভাগ করুন।
y+4\times 2=7
y+4x=7 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y+8=7
4 কে 2 বার গুণ করুন।
y=-1
সমীকরণের উভয় দিক থেকে 8 বাদ দিন।
y=-1,x=2
সিস্টেম এখন সমাধান করা হয়েছে।