\left\{ \begin{array} { l } { x - 1 = - \frac { 3 } { 2 } ( y + 2 ) } \\ { x + y - 2 = 0 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=10
y=-8
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x-1=-\frac{3}{2}y-3
প্রথম সমীকরণটির সরলীকরণ করুন। -\frac{3}{2} কে y+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x-1+\frac{3}{2}y=-3
উভয় সাইডে \frac{3}{2}y যোগ করুন৷
x+\frac{3}{2}y=-3+1
উভয় সাইডে 1 যোগ করুন৷
x+\frac{3}{2}y=-2
-2 পেতে -3 এবং 1 যোগ করুন।
x+y=2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
x+\frac{3}{2}y=-2,x+y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+\frac{3}{2}y=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-\frac{3}{2}y-2
সমীকরণের উভয় দিক থেকে \frac{3y}{2} বাদ দিন।
-\frac{3}{2}y-2+y=2
অন্য সমীকরণ x+y=2 এ x এর জন্য -\frac{3y}{2}-2 বিপরীত করু ন।
-\frac{1}{2}y-2=2
y এ -\frac{3y}{2} যোগ করুন।
-\frac{1}{2}y=4
সমীকরণের উভয় দিকে 2 যোগ করুন।
y=-8
-2 দিয়ে উভয় দিককে গুণ করুন।
x=-\frac{3}{2}\left(-8\right)-2
x=-\frac{3}{2}y-2 এ y এর জন্য পরিবর্ত হিসাবে -8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=12-2
-\frac{3}{2} কে -8 বার গুণ করুন।
x=10
12 এ -2 যোগ করুন।
x=10,y=-8
সিস্টেম এখন সমাধান করা হয়েছে।
x-1=-\frac{3}{2}y-3
প্রথম সমীকরণটির সরলীকরণ করুন। -\frac{3}{2} কে y+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x-1+\frac{3}{2}y=-3
উভয় সাইডে \frac{3}{2}y যোগ করুন৷
x+\frac{3}{2}y=-3+1
উভয় সাইডে 1 যোগ করুন৷
x+\frac{3}{2}y=-2
-2 পেতে -3 এবং 1 যোগ করুন।
x+y=2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
x+\frac{3}{2}y=-2,x+y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\frac{3}{2}}&-\frac{\frac{3}{2}}{1-\frac{3}{2}}\\-\frac{1}{1-\frac{3}{2}}&\frac{1}{1-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&3\\2&-2\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+3\times 2\\2\left(-2\right)-2\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-8\end{matrix}\right)
পাটিগণিত করুন।
x=10,y=-8
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-1=-\frac{3}{2}y-3
প্রথম সমীকরণটির সরলীকরণ করুন। -\frac{3}{2} কে y+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x-1+\frac{3}{2}y=-3
উভয় সাইডে \frac{3}{2}y যোগ করুন৷
x+\frac{3}{2}y=-3+1
উভয় সাইডে 1 যোগ করুন৷
x+\frac{3}{2}y=-2
-2 পেতে -3 এবং 1 যোগ করুন।
x+y=2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
x+\frac{3}{2}y=-2,x+y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-x+\frac{3}{2}y-y=-2-2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+\frac{3}{2}y=-2 থেকে x+y=2 বাদ দিন।
\frac{3}{2}y-y=-2-2
-x এ x যোগ করুন। টার্ম x এবং -x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
\frac{1}{2}y=-2-2
-y এ \frac{3y}{2} যোগ করুন।
\frac{1}{2}y=-4
-2 এ -2 যোগ করুন।
y=-8
2 দিয়ে উভয় দিককে গুণ করুন।
x-8=2
x+y=2 এ y এর জন্য পরিবর্ত হিসাবে -8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=10
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=10,y=-8
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}