মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x-2y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2y বিয়োগ করুন।
5y-3x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
x-2y=0,-3x+5y=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-2y=0
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=2y
সমীকরণের উভয় দিকে 2y যোগ করুন।
-3\times 2y+5y=1
অন্য সমীকরণ -3x+5y=1 এ x এর জন্য 2y বিপরীত করু ন।
-6y+5y=1
-3 কে 2y বার গুণ করুন।
-y=1
5y এ -6y যোগ করুন।
y=-1
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=2\left(-1\right)
x=2y এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-2
2 কে -1 বার গুণ করুন।
x=-2,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
x-2y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2y বিয়োগ করুন।
5y-3x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
x-2y=0,-3x+5y=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&5\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-2\left(-3\right)\right)}&-\frac{-2}{5-\left(-2\left(-3\right)\right)}\\-\frac{-3}{5-\left(-2\left(-3\right)\right)}&\frac{1}{5-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&-2\\-3&-1\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
মেট্রিক্স গুণ করুন।
x=-2,y=-1
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-2y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 2y বিয়োগ করুন।
5y-3x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
x-2y=0,-3x+5y=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-3x-3\left(-2\right)y=0,-3x+5y=1
x এবং -3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
-3x+6y=0,-3x+5y=1
সিমপ্লিফাই।
-3x+3x+6y-5y=-1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -3x+6y=0 থেকে -3x+5y=1 বাদ দিন।
6y-5y=-1
3x এ -3x যোগ করুন। টার্ম -3x এবং 3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
y=-1
-5y এ 6y যোগ করুন।
-3x+5\left(-1\right)=1
-3x+5y=1 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-3x-5=1
5 কে -1 বার গুণ করুন।
-3x=6
সমীকরণের উভয় দিকে 5 যোগ করুন।
x=-2
-3 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।