মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=6,2x-2y=4
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+6
সমীকরণের উভয় দিক থেকে y বাদ দিন।
2\left(-y+6\right)-2y=4
অন্য সমীকরণ 2x-2y=4 এ x এর জন্য -y+6 বিপরীত করু ন।
-2y+12-2y=4
2 কে -y+6 বার গুণ করুন।
-4y+12=4
-2y এ -2y যোগ করুন।
-4y=-8
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
y=2
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=-2+6
x=-y+6 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=4
-2 এ 6 যোগ করুন।
x=4,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=6,2x-2y=4
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}1&1\\2&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{4}\times 4\\\frac{1}{2}\times 6-\frac{1}{4}\times 4\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=6,2x-2y=4
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x+2y=2\times 6,2x-2y=4
x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
2x+2y=12,2x-2y=4
সিমপ্লিফাই।
2x-2x+2y+2y=12-4
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+2y=12 থেকে 2x-2y=4 বাদ দিন।
2y+2y=12-4
-2x এ 2x যোগ করুন। টার্ম 2x এবং -2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
4y=12-4
2y এ 2y যোগ করুন।
4y=8
-4 এ 12 যোগ করুন।
y=2
4 দিয়ে উভয় দিককে ভাগ করুন।
2x-2\times 2=4
2x-2y=4 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x-4=4
-2 কে 2 বার গুণ করুন।
2x=8
সমীকরণের উভয় দিকে 4 যোগ করুন।
x=4
2 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=2
সিস্টেম এখন সমাধান করা হয়েছে।