মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=30,20x+25y=640
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=30
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+30
সমীকরণের উভয় দিক থেকে y বাদ দিন।
20\left(-y+30\right)+25y=640
অন্য সমীকরণ 20x+25y=640 এ x এর জন্য -y+30 বিপরীত করু ন।
-20y+600+25y=640
20 কে -y+30 বার গুণ করুন।
5y+600=640
25y এ -20y যোগ করুন।
5y=40
সমীকরণের উভয় দিক থেকে 600 বাদ দিন।
y=8
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-8+30
x=-y+30 এ y এর জন্য পরিবর্ত হিসাবে 8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=22
-8 এ 30 যোগ করুন।
x=22,y=8
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=30,20x+25y=640
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\640\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
\left(\begin{matrix}1&1\\20&25\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-20}&-\frac{1}{25-20}\\-\frac{20}{25-20}&\frac{1}{25-20}\end{matrix}\right)\left(\begin{matrix}30\\640\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{1}{5}\\-4&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}30\\640\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 30-\frac{1}{5}\times 640\\-4\times 30+\frac{1}{5}\times 640\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\8\end{matrix}\right)
পাটিগণিত করুন।
x=22,y=8
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=30,20x+25y=640
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
20x+20y=20\times 30,20x+25y=640
x এবং 20x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 20 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
20x+20y=600,20x+25y=640
সিমপ্লিফাই।
20x-20x+20y-25y=600-640
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 20x+20y=600 থেকে 20x+25y=640 বাদ দিন।
20y-25y=600-640
-20x এ 20x যোগ করুন। টার্ম 20x এবং -20x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5y=600-640
-25y এ 20y যোগ করুন।
-5y=-40
-640 এ 600 যোগ করুন।
y=8
-5 দিয়ে উভয় দিককে ভাগ করুন।
20x+25\times 8=640
20x+25y=640 এ y এর জন্য পরিবর্ত হিসাবে 8 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
20x+200=640
25 কে 8 বার গুণ করুন।
20x=440
সমীকরণের উভয় দিক থেকে 200 বাদ দিন।
x=22
20 দিয়ে উভয় দিককে ভাগ করুন।
x=22,y=8
সিস্টেম এখন সমাধান করা হয়েছে।