মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=1,x-y=6
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+1
সমীকরণের উভয় দিক থেকে y বাদ দিন।
-y+1-y=6
অন্য সমীকরণ x-y=6 এ x এর জন্য -y+1 বিপরীত করু ন।
-2y+1=6
-y এ -y যোগ করুন।
-2y=5
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
y=-\frac{5}{2}
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\left(-\frac{5}{2}\right)+1
x=-y+1 এ y এর জন্য পরিবর্ত হিসাবে -\frac{5}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{5}{2}+1
-1 কে -\frac{5}{2} বার গুণ করুন।
x=\frac{7}{2}
\frac{5}{2} এ 1 যোগ করুন।
x=\frac{7}{2},y=-\frac{5}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=1,x-y=6
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 6\\\frac{1}{2}-\frac{1}{2}\times 6\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{5}{2}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{7}{2},y=-\frac{5}{2}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=1,x-y=6
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-x+y+y=1-6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+y=1 থেকে x-y=6 বাদ দিন।
y+y=1-6
-x এ x যোগ করুন। টার্ম x এবং -x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2y=1-6
y এ y যোগ করুন।
2y=-5
-6 এ 1 যোগ করুন।
y=-\frac{5}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x-\left(-\frac{5}{2}\right)=6
x-y=6 এ y এর জন্য পরিবর্ত হিসাবে -\frac{5}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+\frac{5}{2}=6
-1 কে -\frac{5}{2} বার গুণ করুন।
x=\frac{7}{2}
সমীকরণের উভয় দিক থেকে \frac{5}{2} বাদ দিন।
x=\frac{7}{2},y=-\frac{5}{2}
সিস্টেম এখন সমাধান করা হয়েছে।