মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+6y=90,3x+3y=-30
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+6y=90
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-6y+90
সমীকরণের উভয় দিক থেকে 6y বাদ দিন।
3\left(-6y+90\right)+3y=-30
অন্য সমীকরণ 3x+3y=-30 এ x এর জন্য -6y+90 বিপরীত করু ন।
-18y+270+3y=-30
3 কে -6y+90 বার গুণ করুন।
-15y+270=-30
3y এ -18y যোগ করুন।
-15y=-300
সমীকরণের উভয় দিক থেকে 270 বাদ দিন।
y=20
-15 দিয়ে উভয় দিককে ভাগ করুন।
x=-6\times 20+90
x=-6y+90 এ y এর জন্য পরিবর্ত হিসাবে 20 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-120+90
-6 কে 20 বার গুণ করুন।
x=-30
-120 এ 90 যোগ করুন।
x=-30,y=20
সিস্টেম এখন সমাধান করা হয়েছে।
x+6y=90,3x+3y=-30
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\-30\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
\left(\begin{matrix}1&6\\3&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-6\times 3}&-\frac{6}{3-6\times 3}\\-\frac{3}{3-6\times 3}&\frac{1}{3-6\times 3}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 90+\frac{2}{5}\left(-30\right)\\\frac{1}{5}\times 90-\frac{1}{15}\left(-30\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\20\end{matrix}\right)
পাটিগণিত করুন।
x=-30,y=20
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+6y=90,3x+3y=-30
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3x+3\times 6y=3\times 90,3x+3y=-30
x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
3x+18y=270,3x+3y=-30
সিমপ্লিফাই।
3x-3x+18y-3y=270+30
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3x+18y=270 থেকে 3x+3y=-30 বাদ দিন।
18y-3y=270+30
-3x এ 3x যোগ করুন। টার্ম 3x এবং -3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
15y=270+30
-3y এ 18y যোগ করুন।
15y=300
30 এ 270 যোগ করুন।
y=20
15 দিয়ে উভয় দিককে ভাগ করুন।
3x+3\times 20=-30
3x+3y=-30 এ y এর জন্য পরিবর্ত হিসাবে 20 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x+60=-30
3 কে 20 বার গুণ করুন।
3x=-90
সমীকরণের উভয় দিক থেকে 60 বাদ দিন।
x=-30
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-30,y=20
সিস্টেম এখন সমাধান করা হয়েছে।