মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+2y=-18,3x-y=-1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+2y=-18
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-2y-18
সমীকরণের উভয় দিক থেকে 2y বাদ দিন।
3\left(-2y-18\right)-y=-1
অন্য সমীকরণ 3x-y=-1 এ x এর জন্য -2y-18 বিপরীত করু ন।
-6y-54-y=-1
3 কে -2y-18 বার গুণ করুন।
-7y-54=-1
-y এ -6y যোগ করুন।
-7y=53
সমীকরণের উভয় দিকে 54 যোগ করুন।
y=-\frac{53}{7}
-7 দিয়ে উভয় দিককে ভাগ করুন।
x=-2\left(-\frac{53}{7}\right)-18
x=-2y-18 এ y এর জন্য পরিবর্ত হিসাবে -\frac{53}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{106}{7}-18
-2 কে -\frac{53}{7} বার গুণ করুন।
x=-\frac{20}{7}
\frac{106}{7} এ -18 যোগ করুন।
x=-\frac{20}{7},y=-\frac{53}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
x+2y=-18,3x-y=-1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\-1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-18\right)+\frac{2}{7}\left(-1\right)\\\frac{3}{7}\left(-18\right)-\frac{1}{7}\left(-1\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{7}\\-\frac{53}{7}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{20}{7},y=-\frac{53}{7}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+2y=-18,3x-y=-1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3x+3\times 2y=3\left(-18\right),3x-y=-1
x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
3x+6y=-54,3x-y=-1
সিমপ্লিফাই।
3x-3x+6y+y=-54+1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3x+6y=-54 থেকে 3x-y=-1 বাদ দিন।
6y+y=-54+1
-3x এ 3x যোগ করুন। টার্ম 3x এবং -3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7y=-54+1
y এ 6y যোগ করুন।
7y=-53
1 এ -54 যোগ করুন।
y=-\frac{53}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
3x-\left(-\frac{53}{7}\right)=-1
3x-y=-1 এ y এর জন্য পরিবর্ত হিসাবে -\frac{53}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x=-\frac{60}{7}
সমীকরণের উভয় দিক থেকে \frac{53}{7} বাদ দিন।
x=-\frac{20}{7}
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{20}{7},y=-\frac{53}{7}
সিস্টেম এখন সমাধান করা হয়েছে।