মূল বিষয়বস্তুতে এড়িয়ে যান
a, b এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+3b=6,a-6b=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
a+3b=6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের a পৃথক করে a-এর জন্য সমাধান করুন।
a=-3b+6
সমীকরণের উভয় দিক থেকে 3b বাদ দিন।
-3b+6-6b=12
অন্য সমীকরণ a-6b=12 এ a এর জন্য -3b+6 বিপরীত করু ন।
-9b+6=12
-6b এ -3b যোগ করুন।
-9b=6
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
b=-\frac{2}{3}
-9 দিয়ে উভয় দিককে ভাগ করুন।
a=-3\left(-\frac{2}{3}\right)+6
a=-3b+6 এ b এর জন্য পরিবর্ত হিসাবে -\frac{2}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি a এর জন্য সরাসরি সমাধান করতে পারেন।
a=2+6
-3 কে -\frac{2}{3} বার গুণ করুন।
a=8
2 এ 6 যোগ করুন।
a=8,b=-\frac{2}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
a+3b=6,a-6b=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
\left(\begin{matrix}1&3\\1&-6\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-3}&-\frac{3}{-6-3}\\-\frac{1}{-6-3}&\frac{1}{-6-3}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6+\frac{1}{3}\times 12\\\frac{1}{9}\times 6-\frac{1}{9}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}8\\-\frac{2}{3}\end{matrix}\right)
পাটিগণিত করুন।
a=8,b=-\frac{2}{3}
ম্যাট্রিক্স এলিমেন্ট a এবং b বের করুন।
a+3b=6,a-6b=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
a-a+3b+6b=6-12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে a+3b=6 থেকে a-6b=12 বাদ দিন।
3b+6b=6-12
-a এ a যোগ করুন। টার্ম a এবং -a বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
9b=6-12
6b এ 3b যোগ করুন।
9b=-6
-12 এ 6 যোগ করুন।
b=-\frac{2}{3}
9 দিয়ে উভয় দিককে ভাগ করুন।
a-6\left(-\frac{2}{3}\right)=12
a-6b=12 এ b এর জন্য পরিবর্ত হিসাবে -\frac{2}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি a এর জন্য সরাসরি সমাধান করতে পারেন।
a+4=12
-6 কে -\frac{2}{3} বার গুণ করুন।
a=8
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
a=8,b=-\frac{2}{3}
সিস্টেম এখন সমাধান করা হয়েছে।