মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

9x-4y=8,6x-2y=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
9x-4y=8
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
9x=4y+8
সমীকরণের উভয় দিকে 4y যোগ করুন।
x=\frac{1}{9}\left(4y+8\right)
9 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{4}{9}y+\frac{8}{9}
\frac{1}{9} কে 8+4y বার গুণ করুন।
6\left(\frac{4}{9}y+\frac{8}{9}\right)-2y=3
অন্য সমীকরণ 6x-2y=3 এ x এর জন্য \frac{8+4y}{9} বিপরীত করু ন।
\frac{8}{3}y+\frac{16}{3}-2y=3
6 কে \frac{8+4y}{9} বার গুণ করুন।
\frac{2}{3}y+\frac{16}{3}=3
-2y এ \frac{8y}{3} যোগ করুন।
\frac{2}{3}y=-\frac{7}{3}
সমীকরণের উভয় দিক থেকে \frac{16}{3} বাদ দিন।
y=-\frac{7}{2}
\frac{2}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{4}{9}\left(-\frac{7}{2}\right)+\frac{8}{9}
x=\frac{4}{9}y+\frac{8}{9} এ y এর জন্য পরিবর্ত হিসাবে -\frac{7}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-14+8}{9}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{4}{9} কে -\frac{7}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{2}{3}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{14}{9} এ \frac{8}{9} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{2}{3},y=-\frac{7}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
9x-4y=8,6x-2y=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9\left(-2\right)-\left(-4\times 6\right)}&-\frac{-4}{9\left(-2\right)-\left(-4\times 6\right)}\\-\frac{6}{9\left(-2\right)-\left(-4\times 6\right)}&\frac{9}{9\left(-2\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 8+\frac{2}{3}\times 3\\-8+\frac{3}{2}\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{7}{2}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{2}{3},y=-\frac{7}{2}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
9x-4y=8,6x-2y=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
6\times 9x+6\left(-4\right)y=6\times 8,9\times 6x+9\left(-2\right)y=9\times 3
9x এবং 6x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 6 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 9 দিয়ে গুণ করুন।
54x-24y=48,54x-18y=27
সিমপ্লিফাই।
54x-54x-24y+18y=48-27
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 54x-24y=48 থেকে 54x-18y=27 বাদ দিন।
-24y+18y=48-27
-54x এ 54x যোগ করুন। টার্ম 54x এবং -54x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-6y=48-27
18y এ -24y যোগ করুন।
-6y=21
-27 এ 48 যোগ করুন।
y=-\frac{7}{2}
-6 দিয়ে উভয় দিককে ভাগ করুন।
6x-2\left(-\frac{7}{2}\right)=3
6x-2y=3 এ y এর জন্য পরিবর্ত হিসাবে -\frac{7}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
6x+7=3
-2 কে -\frac{7}{2} বার গুণ করুন।
6x=-4
সমীকরণের উভয় দিক থেকে 7 বাদ দিন।
x=-\frac{2}{3}
6 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{2}{3},y=-\frac{7}{2}
সিস্টেম এখন সমাধান করা হয়েছে।