মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

8x+3y=25,2x+3y=13
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
8x+3y=25
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
8x=-3y+25
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{8}\left(-3y+25\right)
8 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{8}y+\frac{25}{8}
\frac{1}{8} কে -3y+25 বার গুণ করুন।
2\left(-\frac{3}{8}y+\frac{25}{8}\right)+3y=13
অন্য সমীকরণ 2x+3y=13 এ x এর জন্য \frac{-3y+25}{8} বিপরীত করু ন।
-\frac{3}{4}y+\frac{25}{4}+3y=13
2 কে \frac{-3y+25}{8} বার গুণ করুন।
\frac{9}{4}y+\frac{25}{4}=13
3y এ -\frac{3y}{4} যোগ করুন।
\frac{9}{4}y=\frac{27}{4}
সমীকরণের উভয় দিক থেকে \frac{25}{4} বাদ দিন।
y=3
\frac{9}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{8}\times 3+\frac{25}{8}
x=-\frac{3}{8}y+\frac{25}{8} এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-9+25}{8}
-\frac{3}{8} কে 3 বার গুণ করুন।
x=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{9}{8} এ \frac{25}{8} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
8x+3y=25,2x+3y=13
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\13\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
\left(\begin{matrix}8&3\\2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-3\times 2}&-\frac{3}{8\times 3-3\times 2}\\-\frac{2}{8\times 3-3\times 2}&\frac{8}{8\times 3-3\times 2}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 25-\frac{1}{6}\times 13\\-\frac{1}{9}\times 25+\frac{4}{9}\times 13\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
পাটিগণিত করুন।
x=2,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
8x+3y=25,2x+3y=13
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
8x-2x+3y-3y=25-13
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 8x+3y=25 থেকে 2x+3y=13 বাদ দিন।
8x-2x=25-13
-3y এ 3y যোগ করুন। টার্ম 3y এবং -3y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
6x=25-13
-2x এ 8x যোগ করুন।
6x=12
-13 এ 25 যোগ করুন।
x=2
6 দিয়ে উভয় দিককে ভাগ করুন।
2\times 2+3y=13
2x+3y=13 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
4+3y=13
2 কে 2 বার গুণ করুন।
3y=9
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
y=3
3 দিয়ে উভয় দিককে ভাগ করুন।
x=2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।