মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

6x-3y=12,2x+2y=10
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
6x-3y=12
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
6x=3y+12
সমীকরণের উভয় দিকে 3y যোগ করুন।
x=\frac{1}{6}\left(3y+12\right)
6 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{2}y+2
\frac{1}{6} কে 12+3y বার গুণ করুন।
2\left(\frac{1}{2}y+2\right)+2y=10
অন্য সমীকরণ 2x+2y=10 এ x এর জন্য \frac{y}{2}+2 বিপরীত করু ন।
y+4+2y=10
2 কে \frac{y}{2}+2 বার গুণ করুন।
3y+4=10
2y এ y যোগ করুন।
3y=6
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
y=2
3 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{2}\times 2+2
x=\frac{1}{2}y+2 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=1+2
\frac{1}{2} কে 2 বার গুণ করুন।
x=3
1 এ 2 যোগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
6x-3y=12,2x+2y=10
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\10\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
\left(\begin{matrix}6&-3\\2&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-\left(-3\times 2\right)}&-\frac{-3}{6\times 2-\left(-3\times 2\right)}\\-\frac{2}{6\times 2-\left(-3\times 2\right)}&\frac{6}{6\times 2-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{6}\\-\frac{1}{9}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 12+\frac{1}{6}\times 10\\-\frac{1}{9}\times 12+\frac{1}{3}\times 10\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
6x-3y=12,2x+2y=10
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times 6x+2\left(-3\right)y=2\times 12,6\times 2x+6\times 2y=6\times 10
6x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 6 দিয়ে গুণ করুন।
12x-6y=24,12x+12y=60
সিমপ্লিফাই।
12x-12x-6y-12y=24-60
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 12x-6y=24 থেকে 12x+12y=60 বাদ দিন।
-6y-12y=24-60
-12x এ 12x যোগ করুন। টার্ম 12x এবং -12x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-18y=24-60
-12y এ -6y যোগ করুন।
-18y=-36
-60 এ 24 যোগ করুন।
y=2
-18 দিয়ে উভয় দিককে ভাগ করুন।
2x+2\times 2=10
2x+2y=10 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x+4=10
2 কে 2 বার গুণ করুন।
2x=6
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
x=3
2 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।