মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x-4y=19,3x+2y=7
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-4y=19
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=4y+19
সমীকরণের উভয় দিকে 4y যোগ করুন।
x=\frac{1}{5}\left(4y+19\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{4}{5}y+\frac{19}{5}
\frac{1}{5} কে 4y+19 বার গুণ করুন।
3\left(\frac{4}{5}y+\frac{19}{5}\right)+2y=7
অন্য সমীকরণ 3x+2y=7 এ x এর জন্য \frac{4y+19}{5} বিপরীত করু ন।
\frac{12}{5}y+\frac{57}{5}+2y=7
3 কে \frac{4y+19}{5} বার গুণ করুন।
\frac{22}{5}y+\frac{57}{5}=7
2y এ \frac{12y}{5} যোগ করুন।
\frac{22}{5}y=-\frac{22}{5}
সমীকরণের উভয় দিক থেকে \frac{57}{5} বাদ দিন।
y=-1
\frac{22}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{4}{5}\left(-1\right)+\frac{19}{5}
x=\frac{4}{5}y+\frac{19}{5} এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-4+19}{5}
\frac{4}{5} কে -1 বার গুণ করুন।
x=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{4}{5} এ \frac{19}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=3,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
5x-4y=19,3x+2y=7
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\times 3\right)}&-\frac{-4}{5\times 2-\left(-4\times 3\right)}\\-\frac{3}{5\times 2-\left(-4\times 3\right)}&\frac{5}{5\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{3}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{2}{11}\times 7\\-\frac{3}{22}\times 19+\frac{5}{22}\times 7\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=-1
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-4y=19,3x+2y=7
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 5x+3\left(-4\right)y=3\times 19,5\times 3x+5\times 2y=5\times 7
5x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
15x-12y=57,15x+10y=35
সিমপ্লিফাই।
15x-15x-12y-10y=57-35
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 15x-12y=57 থেকে 15x+10y=35 বাদ দিন।
-12y-10y=57-35
-15x এ 15x যোগ করুন। টার্ম 15x এবং -15x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-22y=57-35
-10y এ -12y যোগ করুন।
-22y=22
-35 এ 57 যোগ করুন।
y=-1
-22 দিয়ে উভয় দিককে ভাগ করুন।
3x+2\left(-1\right)=7
3x+2y=7 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x-2=7
2 কে -1 বার গুণ করুন।
3x=9
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=3
3 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।