মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x+y=35;7x+1,1y=40
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x+y=35
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=-y+35
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{5}\left(-y+35\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{5}y+7
\frac{1}{5} কে -y+35 বার গুণ করুন।
7\left(-\frac{1}{5}y+7\right)+1,1y=40
অন্য সমীকরণ 7x+1,1y=40 এ x এর জন্য -\frac{y}{5}+7 বিপরীত করু ন।
-\frac{7}{5}y+49+1,1y=40
7 কে -\frac{y}{5}+7 বার গুণ করুন।
-\frac{3}{10}y+49=40
\frac{11y}{10} এ -\frac{7y}{5} যোগ করুন।
-\frac{3}{10}y=-9
সমীকরণের উভয় দিক থেকে 49 বাদ দিন।
y=30
-\frac{3}{10} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{5}\times 30+7
x=-\frac{1}{5}y+7 এ y এর জন্য পরিবর্ত হিসাবে 30 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-6+7
-\frac{1}{5} কে 30 বার গুণ করুন।
x=1
-6 এ 7 যোগ করুন।
x=1;y=30
সিস্টেম এখন সমাধান করা হয়েছে।
5x+y=35;7x+1,1y=40
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right))\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1,1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1,1}{5\times 1,1-7}&-\frac{1}{5\times 1,1-7}\\-\frac{7}{5\times 1,1-7}&\frac{5}{5\times 1,1-7}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য matrix{{a,b},{c,d}}, উল্টানো ম্যাট্রিক্স হল matrix{{d/(ad-bc),(-b)/(ad-bc)},{(-c)/(ad-bc),a/(ad-bc)}}, তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}&\frac{2}{3}\\\frac{14}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}\times 35+\frac{2}{3}\times 40\\\frac{14}{3}\times 35-\frac{10}{3}\times 40\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\30\end{matrix}\right)
পাটিগণিত করুন।
x=1;y=30
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x+y=35;7x+1,1y=40
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7\times 5x+7y=7\times 35;5\times 7x+5\times 1,1y=5\times 40
5x এবং 7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
35x+7y=245;35x+5,5y=200
সিমপ্লিফাই।
35x-35x+7y-5,5y=245-200
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 35x+7y=245 থেকে 35x+5,5y=200 বাদ দিন।
7y-5,5y=245-200
-35x এ 35x যোগ করুন। টার্ম 35x এবং -35x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
1,5y=245-200
-\frac{11y}{2} এ 7y যোগ করুন।
1,5y=45
-200 এ 245 যোগ করুন।
y=30
1,5 দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
7x+1,1\times 30=40
7x+1,1y=40 এ y এর জন্য পরিবর্ত হিসাবে 30 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
7x+33=40
1,1 কে 30 বার গুণ করুন।
7x=7
সমীকরণের উভয় দিক থেকে 33 বাদ দিন।
x=1
7 দিয়ে উভয় দিককে ভাগ করুন।
x=1;y=30
সিস্টেম এখন সমাধান করা হয়েছে।