মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

1020=2060-2x-4y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 2x+4y এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2060-2x-4y=1020
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-2x-4y=1020-2060
উভয় দিক থেকে 2060 বিয়োগ করুন।
-2x-4y=-1040
-1040 পেতে 1020 থেকে 2060 বাদ দিন।
5x+7y=2060,-2x-4y=-1040
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x+7y=2060
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=-7y+2060
সমীকরণের উভয় দিক থেকে 7y বাদ দিন।
x=\frac{1}{5}\left(-7y+2060\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{7}{5}y+412
\frac{1}{5} কে -7y+2060 বার গুণ করুন।
-2\left(-\frac{7}{5}y+412\right)-4y=-1040
অন্য সমীকরণ -2x-4y=-1040 এ x এর জন্য -\frac{7y}{5}+412 বিপরীত করু ন।
\frac{14}{5}y-824-4y=-1040
-2 কে -\frac{7y}{5}+412 বার গুণ করুন।
-\frac{6}{5}y-824=-1040
-4y এ \frac{14y}{5} যোগ করুন।
-\frac{6}{5}y=-216
সমীকরণের উভয় দিকে 824 যোগ করুন।
y=180
-\frac{6}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{7}{5}\times 180+412
x=-\frac{7}{5}y+412 এ y এর জন্য পরিবর্ত হিসাবে 180 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-252+412
-\frac{7}{5} কে 180 বার গুণ করুন।
x=160
-252 এ 412 যোগ করুন।
x=160,y=180
সিস্টেম এখন সমাধান করা হয়েছে।
1020=2060-2x-4y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 2x+4y এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2060-2x-4y=1020
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-2x-4y=1020-2060
উভয় দিক থেকে 2060 বিয়োগ করুন।
-2x-4y=-1040
-1040 পেতে 1020 থেকে 2060 বাদ দিন।
5x+7y=2060,-2x-4y=-1040
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2060\\-1040\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-7\left(-2\right)}&-\frac{7}{5\left(-4\right)-7\left(-2\right)}\\-\frac{-2}{5\left(-4\right)-7\left(-2\right)}&\frac{5}{5\left(-4\right)-7\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2060\\-1040\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{6}\\-\frac{1}{3}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}2060\\-1040\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 2060+\frac{7}{6}\left(-1040\right)\\-\frac{1}{3}\times 2060-\frac{5}{6}\left(-1040\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}160\\180\end{matrix}\right)
পাটিগণিত করুন।
x=160,y=180
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
1020=2060-2x-4y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 2x+4y এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2060-2x-4y=1020
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-2x-4y=1020-2060
উভয় দিক থেকে 2060 বিয়োগ করুন।
-2x-4y=-1040
-1040 পেতে 1020 থেকে 2060 বাদ দিন।
5x+7y=2060,-2x-4y=-1040
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2\times 5x-2\times 7y=-2\times 2060,5\left(-2\right)x+5\left(-4\right)y=5\left(-1040\right)
5x এবং -2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-10x-14y=-4120,-10x-20y=-5200
সিমপ্লিফাই।
-10x+10x-14y+20y=-4120+5200
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -10x-14y=-4120 থেকে -10x-20y=-5200 বাদ দিন।
-14y+20y=-4120+5200
10x এ -10x যোগ করুন। টার্ম -10x এবং 10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
6y=-4120+5200
20y এ -14y যোগ করুন।
6y=1080
5200 এ -4120 যোগ করুন।
y=180
6 দিয়ে উভয় দিককে ভাগ করুন।
-2x-4\times 180=-1040
-2x-4y=-1040 এ y এর জন্য পরিবর্ত হিসাবে 180 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-2x-720=-1040
-4 কে 180 বার গুণ করুন।
-2x=-320
সমীকরণের উভয় দিকে 720 যোগ করুন।
x=160
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=160,y=180
সিস্টেম এখন সমাধান করা হয়েছে।