মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x+2y=-9,3x-4y=-8
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x+2y=-9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=-2y-9
সমীকরণের উভয় দিক থেকে 2y বাদ দিন।
x=\frac{1}{5}\left(-2y-9\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{2}{5}y-\frac{9}{5}
\frac{1}{5} কে -2y-9 বার গুণ করুন।
3\left(-\frac{2}{5}y-\frac{9}{5}\right)-4y=-8
অন্য সমীকরণ 3x-4y=-8 এ x এর জন্য \frac{-2y-9}{5} বিপরীত করু ন।
-\frac{6}{5}y-\frac{27}{5}-4y=-8
3 কে \frac{-2y-9}{5} বার গুণ করুন।
-\frac{26}{5}y-\frac{27}{5}=-8
-4y এ -\frac{6y}{5} যোগ করুন।
-\frac{26}{5}y=-\frac{13}{5}
সমীকরণের উভয় দিকে \frac{27}{5} যোগ করুন।
y=\frac{1}{2}
-\frac{26}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{2}{5}\times \frac{1}{2}-\frac{9}{5}
x=-\frac{2}{5}y-\frac{9}{5} এ y এর জন্য পরিবর্ত হিসাবে \frac{1}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-1-9}{5}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{2}{5} কে \frac{1}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{1}{5} এ -\frac{9}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-2,y=\frac{1}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
5x+2y=-9,3x-4y=-8
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-8\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&2\\3&-4\end{matrix}\right))\left(\begin{matrix}5&2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&-4\end{matrix}\right))\left(\begin{matrix}-9\\-8\end{matrix}\right)
\left(\begin{matrix}5&2\\3&-4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&-4\end{matrix}\right))\left(\begin{matrix}-9\\-8\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&-4\end{matrix}\right))\left(\begin{matrix}-9\\-8\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-2\times 3}&-\frac{2}{5\left(-4\right)-2\times 3}\\-\frac{3}{5\left(-4\right)-2\times 3}&\frac{5}{5\left(-4\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}-9\\-8\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\\frac{3}{26}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-9\\-8\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\left(-9\right)+\frac{1}{13}\left(-8\right)\\\frac{3}{26}\left(-9\right)-\frac{5}{26}\left(-8\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\\frac{1}{2}\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=\frac{1}{2}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x+2y=-9,3x-4y=-8
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 5x+3\times 2y=3\left(-9\right),5\times 3x+5\left(-4\right)y=5\left(-8\right)
5x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
15x+6y=-27,15x-20y=-40
সিমপ্লিফাই।
15x-15x+6y+20y=-27+40
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 15x+6y=-27 থেকে 15x-20y=-40 বাদ দিন।
6y+20y=-27+40
-15x এ 15x যোগ করুন। টার্ম 15x এবং -15x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
26y=-27+40
20y এ 6y যোগ করুন।
26y=13
40 এ -27 যোগ করুন।
y=\frac{1}{2}
26 দিয়ে উভয় দিককে ভাগ করুন।
3x-4\times \frac{1}{2}=-8
3x-4y=-8 এ y এর জন্য পরিবর্ত হিসাবে \frac{1}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x-2=-8
-4 কে \frac{1}{2} বার গুণ করুন।
3x=-6
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=-2
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=\frac{1}{2}
সিস্টেম এখন সমাধান করা হয়েছে।