\left\{ \begin{array} { l } { 5 x + 1 y = 2 } \\ { 2 x - 5 y = 2 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=\frac{4}{9}\approx 0.444444444
y=-\frac{2}{9}\approx -0.222222222
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
5x+y=2,2x-5y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x+y=2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=-y+2
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{5}\left(-y+2\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{5}y+\frac{2}{5}
\frac{1}{5} কে -y+2 বার গুণ করুন।
2\left(-\frac{1}{5}y+\frac{2}{5}\right)-5y=2
অন্য সমীকরণ 2x-5y=2 এ x এর জন্য \frac{-y+2}{5} বিপরীত করু ন।
-\frac{2}{5}y+\frac{4}{5}-5y=2
2 কে \frac{-y+2}{5} বার গুণ করুন।
-\frac{27}{5}y+\frac{4}{5}=2
-5y এ -\frac{2y}{5} যোগ করুন।
-\frac{27}{5}y=\frac{6}{5}
সমীকরণের উভয় দিক থেকে \frac{4}{5} বাদ দিন।
y=-\frac{2}{9}
-\frac{27}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{5}\left(-\frac{2}{9}\right)+\frac{2}{5}
x=-\frac{1}{5}y+\frac{2}{5} এ y এর জন্য পরিবর্ত হিসাবে -\frac{2}{9} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{2}{45}+\frac{2}{5}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{1}{5} কে -\frac{2}{9} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{4}{9}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{2}{45} এ \frac{2}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{4}{9},y=-\frac{2}{9}
সিস্টেম এখন সমাধান করা হয়েছে।
5x+y=2,2x-5y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
\left(\begin{matrix}5&1\\2&-5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{5\left(-5\right)-2}&-\frac{1}{5\left(-5\right)-2}\\-\frac{2}{5\left(-5\right)-2}&\frac{5}{5\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}&\frac{1}{27}\\\frac{2}{27}&-\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}\times 2+\frac{1}{27}\times 2\\\frac{2}{27}\times 2-\frac{5}{27}\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9}\\-\frac{2}{9}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{4}{9},y=-\frac{2}{9}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x+y=2,2x-5y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times 5x+2y=2\times 2,5\times 2x+5\left(-5\right)y=5\times 2
5x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
10x+2y=4,10x-25y=10
সিমপ্লিফাই।
10x-10x+2y+25y=4-10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x+2y=4 থেকে 10x-25y=10 বাদ দিন।
2y+25y=4-10
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
27y=4-10
25y এ 2y যোগ করুন।
27y=-6
-10 এ 4 যোগ করুন।
y=-\frac{2}{9}
27 দিয়ে উভয় দিককে ভাগ করুন।
2x-5\left(-\frac{2}{9}\right)=2
2x-5y=2 এ y এর জন্য পরিবর্ত হিসাবে -\frac{2}{9} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x+\frac{10}{9}=2
-5 কে -\frac{2}{9} বার গুণ করুন।
2x=\frac{8}{9}
সমীকরণের উভয় দিক থেকে \frac{10}{9} বাদ দিন।
x=\frac{4}{9}
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{4}{9},y=-\frac{2}{9}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}