মূল বিষয়বস্তুতে এড়িয়ে যান
k, b এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3k+b=5
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-4k+b=-9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
3k+b=5,-4k+b=-9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3k+b=5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের k পৃথক করে k-এর জন্য সমাধান করুন।
3k=-b+5
সমীকরণের উভয় দিক থেকে b বাদ দিন।
k=\frac{1}{3}\left(-b+5\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
k=-\frac{1}{3}b+\frac{5}{3}
\frac{1}{3} কে -b+5 বার গুণ করুন।
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
অন্য সমীকরণ -4k+b=-9 এ k এর জন্য \frac{-b+5}{3} বিপরীত করু ন।
\frac{4}{3}b-\frac{20}{3}+b=-9
-4 কে \frac{-b+5}{3} বার গুণ করুন।
\frac{7}{3}b-\frac{20}{3}=-9
b এ \frac{4b}{3} যোগ করুন।
\frac{7}{3}b=-\frac{7}{3}
সমীকরণের উভয় দিকে \frac{20}{3} যোগ করুন।
b=-1
\frac{7}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
k=-\frac{1}{3}b+\frac{5}{3} এ b এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি k এর জন্য সরাসরি সমাধান করতে পারেন।
k=\frac{1+5}{3}
-\frac{1}{3} কে -1 বার গুণ করুন।
k=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{3} এ \frac{5}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
k=2,b=-1
সিস্টেম এখন সমাধান করা হয়েছে।
3k+b=5
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-4k+b=-9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
3k+b=5,-4k+b=-9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
পাটিগণিত করুন।
k=2,b=-1
ম্যাট্রিক্স এলিমেন্ট k এবং b বের করুন।
3k+b=5
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-4k+b=-9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
3k+b=5,-4k+b=-9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3k+4k+b-b=5+9
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3k+b=5 থেকে -4k+b=-9 বাদ দিন।
3k+4k=5+9
-b এ b যোগ করুন। টার্ম b এবং -b বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7k=5+9
4k এ 3k যোগ করুন।
7k=14
9 এ 5 যোগ করুন।
k=2
7 দিয়ে উভয় দিককে ভাগ করুন।
-4\times 2+b=-9
-4k+b=-9 এ k এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি b এর জন্য সরাসরি সমাধান করতে পারেন।
-8+b=-9
-4 কে 2 বার গুণ করুন।
b=-1
সমীকরণের উভয় দিকে 8 যোগ করুন।
k=2,b=-1
সিস্টেম এখন সমাধান করা হয়েছে।