মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x-7y=-4,7x+5y=-7
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x-7y=-4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=7y-4
সমীকরণের উভয় দিকে 7y যোগ করুন।
x=\frac{1}{4}\left(7y-4\right)
4 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{7}{4}y-1
\frac{1}{4} কে 7y-4 বার গুণ করুন।
7\left(\frac{7}{4}y-1\right)+5y=-7
অন্য সমীকরণ 7x+5y=-7 এ x এর জন্য \frac{7y}{4}-1 বিপরীত করু ন।
\frac{49}{4}y-7+5y=-7
7 কে \frac{7y}{4}-1 বার গুণ করুন।
\frac{69}{4}y-7=-7
5y এ \frac{49y}{4} যোগ করুন।
\frac{69}{4}y=0
সমীকরণের উভয় দিকে 7 যোগ করুন।
y=0
\frac{69}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-1
x=\frac{7}{4}y-1 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-1,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
4x-7y=-4,7x+5y=-7
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-7\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}4&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
\left(\begin{matrix}4&-7\\7&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-7\times 7\right)}&-\frac{-7}{4\times 5-\left(-7\times 7\right)}\\-\frac{7}{4\times 5-\left(-7\times 7\right)}&\frac{4}{4\times 5-\left(-7\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{69}&\frac{7}{69}\\-\frac{7}{69}&\frac{4}{69}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{69}\left(-4\right)+\frac{7}{69}\left(-7\right)\\-\frac{7}{69}\left(-4\right)+\frac{4}{69}\left(-7\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
পাটিগণিত করুন।
x=-1,y=0
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x-7y=-4,7x+5y=-7
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7\times 4x+7\left(-7\right)y=7\left(-4\right),4\times 7x+4\times 5y=4\left(-7\right)
4x এবং 7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন।
28x-49y=-28,28x+20y=-28
সিমপ্লিফাই।
28x-28x-49y-20y=-28+28
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 28x-49y=-28 থেকে 28x+20y=-28 বাদ দিন।
-49y-20y=-28+28
-28x এ 28x যোগ করুন। টার্ম 28x এবং -28x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-69y=-28+28
-20y এ -49y যোগ করুন।
-69y=0
28 এ -28 যোগ করুন।
y=0
-69 দিয়ে উভয় দিককে ভাগ করুন।
7x=-7
7x+5y=-7 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-1
7 দিয়ে উভয় দিককে ভাগ করুন।
x=-1,y=0
সিস্টেম এখন সমাধান করা হয়েছে।