মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x+3y=12.5,3x+3y=10.5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x+3y=12.5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=-3y+12.5
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{4}\left(-3y+12.5\right)
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{4}y+\frac{25}{8}
\frac{1}{4} কে -3y+12.5 বার গুণ করুন।
3\left(-\frac{3}{4}y+\frac{25}{8}\right)+3y=10.5
অন্য সমীকরণ 3x+3y=10.5 এ x এর জন্য -\frac{3y}{4}+\frac{25}{8} বিপরীত করু ন।
-\frac{9}{4}y+\frac{75}{8}+3y=10.5
3 কে -\frac{3y}{4}+\frac{25}{8} বার গুণ করুন।
\frac{3}{4}y+\frac{75}{8}=10.5
3y এ -\frac{9y}{4} যোগ করুন।
\frac{3}{4}y=\frac{9}{8}
সমীকরণের উভয় দিক থেকে \frac{75}{8} বাদ দিন।
y=\frac{3}{2}
\frac{3}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{4}\times \frac{3}{2}+\frac{25}{8}
x=-\frac{3}{4}y+\frac{25}{8} এ y এর জন্য পরিবর্ত হিসাবে \frac{3}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-9+25}{8}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{3}{4} কে \frac{3}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{9}{8} এ \frac{25}{8} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=2,y=\frac{3}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
4x+3y=12.5,3x+3y=10.5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
\left(\begin{matrix}4&3\\3&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12.5-10.5\\-12.5+\frac{4}{3}\times 10.5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1.5\end{matrix}\right)
পাটিগণিত করুন।
x=2,y=1.5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x+3y=12.5,3x+3y=10.5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4x-3x+3y-3y=\frac{25-21}{2}
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 4x+3y=12.5 থেকে 3x+3y=10.5 বাদ দিন।
4x-3x=\frac{25-21}{2}
-3y এ 3y যোগ করুন। টার্ম 3y এবং -3y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
x=\frac{25-21}{2}
-3x এ 4x যোগ করুন।
x=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -10.5 এ 12.5 যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
3\times 2+3y=10.5
3x+3y=10.5 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
6+3y=10.5
3 কে 2 বার গুণ করুন।
3y=4.5
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
y=1.5
3 দিয়ে উভয় দিককে ভাগ করুন।
x=2,y=1.5
সিস্টেম এখন সমাধান করা হয়েছে।