মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3x-2y=1,x+y=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x-2y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=2y+1
সমীকরণের উভয় দিকে 2y যোগ করুন।
x=\frac{1}{3}\left(2y+1\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{2}{3}y+\frac{1}{3}
\frac{1}{3} কে 2y+1 বার গুণ করুন।
\frac{2}{3}y+\frac{1}{3}+y=12
অন্য সমীকরণ x+y=12 এ x এর জন্য \frac{2y+1}{3} বিপরীত করু ন।
\frac{5}{3}y+\frac{1}{3}=12
y এ \frac{2y}{3} যোগ করুন।
\frac{5}{3}y=\frac{35}{3}
সমীকরণের উভয় দিক থেকে \frac{1}{3} বাদ দিন।
y=7
\frac{5}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{2}{3}\times 7+\frac{1}{3}
x=\frac{2}{3}y+\frac{1}{3} এ y এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{14+1}{3}
\frac{2}{3} কে 7 বার গুণ করুন।
x=5
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{14}{3} এ \frac{1}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=5,y=7
সিস্টেম এখন সমাধান করা হয়েছে।
3x-2y=1,x+y=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{2}{5}\times 12\\-\frac{1}{5}+\frac{3}{5}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
পাটিগণিত করুন।
x=5,y=7
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
3x-2y=1,x+y=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3x-2y=1,3x+3y=3\times 12
3x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন।
3x-2y=1,3x+3y=36
সিমপ্লিফাই।
3x-3x-2y-3y=1-36
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3x-2y=1 থেকে 3x+3y=36 বাদ দিন।
-2y-3y=1-36
-3x এ 3x যোগ করুন। টার্ম 3x এবং -3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5y=1-36
-3y এ -2y যোগ করুন।
-5y=-35
-36 এ 1 যোগ করুন।
y=7
-5 দিয়ে উভয় দিককে ভাগ করুন।
x+7=12
x+y=12 এ y এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=5
সমীকরণের উভয় দিক থেকে 7 বাদ দিন।
x=5,y=7
সিস্টেম এখন সমাধান করা হয়েছে।