মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3x+2y=1,2x-7y=-2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x+2y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=-2y+1
সমীকরণের উভয় দিক থেকে 2y বাদ দিন।
x=\frac{1}{3}\left(-2y+1\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{2}{3}y+\frac{1}{3}
\frac{1}{3} কে -2y+1 বার গুণ করুন।
2\left(-\frac{2}{3}y+\frac{1}{3}\right)-7y=-2
অন্য সমীকরণ 2x-7y=-2 এ x এর জন্য \frac{-2y+1}{3} বিপরীত করু ন।
-\frac{4}{3}y+\frac{2}{3}-7y=-2
2 কে \frac{-2y+1}{3} বার গুণ করুন।
-\frac{25}{3}y+\frac{2}{3}=-2
-7y এ -\frac{4y}{3} যোগ করুন।
-\frac{25}{3}y=-\frac{8}{3}
সমীকরণের উভয় দিক থেকে \frac{2}{3} বাদ দিন।
y=\frac{8}{25}
-\frac{25}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{2}{3}\times \frac{8}{25}+\frac{1}{3}
x=-\frac{2}{3}y+\frac{1}{3} এ y এর জন্য পরিবর্ত হিসাবে \frac{8}{25} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{16}{75}+\frac{1}{3}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{2}{3} কে \frac{8}{25} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{3}{25}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{16}{75} এ \frac{1}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{3}{25},y=\frac{8}{25}
সিস্টেম এখন সমাধান করা হয়েছে।
3x+2y=1,2x-7y=-2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
\left(\begin{matrix}3&2\\2&-7\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3\left(-7\right)-2\times 2}&-\frac{2}{3\left(-7\right)-2\times 2}\\-\frac{2}{3\left(-7\right)-2\times 2}&\frac{3}{3\left(-7\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}&\frac{2}{25}\\\frac{2}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}+\frac{2}{25}\left(-2\right)\\\frac{2}{25}-\frac{3}{25}\left(-2\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\\\frac{8}{25}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{3}{25},y=\frac{8}{25}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
3x+2y=1,2x-7y=-2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times 3x+2\times 2y=2,3\times 2x+3\left(-7\right)y=3\left(-2\right)
3x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন।
6x+4y=2,6x-21y=-6
সিমপ্লিফাই।
6x-6x+4y+21y=2+6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 6x+4y=2 থেকে 6x-21y=-6 বাদ দিন।
4y+21y=2+6
-6x এ 6x যোগ করুন। টার্ম 6x এবং -6x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
25y=2+6
21y এ 4y যোগ করুন।
25y=8
6 এ 2 যোগ করুন।
y=\frac{8}{25}
25 দিয়ে উভয় দিককে ভাগ করুন।
2x-7\times \frac{8}{25}=-2
2x-7y=-2 এ y এর জন্য পরিবর্ত হিসাবে \frac{8}{25} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x-\frac{56}{25}=-2
-7 কে \frac{8}{25} বার গুণ করুন।
2x=\frac{6}{25}
সমীকরণের উভয় দিকে \frac{56}{25} যোগ করুন।
x=\frac{3}{25}
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3}{25},y=\frac{8}{25}
সিস্টেম এখন সমাধান করা হয়েছে।